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INTRODUCTION

It is well known and can be easily shown
that, with present forecast techniques and
accuracy, higher threat scores can be
achieved by increasing the bias above unity.
Figure 1 indicates the effect of increased
bias on threat score. For instance, it
indicates that a forecast with unit bias and
with threat score of 0.2, can be improved to
a threat score of 0.27 by increasing the
bias to 2.6. Skill, therefore, cannot be
judged by threat scores alone, but only in
consideration with other statistics,
especially bias.

My aim in modifying the threat score is to
remove the effect of bias in over fore­
casting, and likewise to exact a penalty for
under forecasting. I will introduce the
notion of complex numbers for threat scores,
although in practice they will occur only in
individual cases, or for very short records,
or for very large amounts of precipitation.
I will suggest that, in the case of a
complex number, its magnitude be taken as a
negative threat score.

The threat score is

where F and Q are respectively, forecast
observed areas or nUabers of events, and
is -hits,- i.e., the area or number of
events correctly forecast.

Records of bias as well as threat score,
prefigurance, and post agreement are kept at
NMC but in comparing techniques and fore­
casters, if bia~es di[[~r substantially,
relative technical skill is unclear. The
same can be said for determining progress in
technical skill from a time series of such
statistics.
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It is important to distinguish between
measures of technical skill and measures of
the usefulness, or service value, of fore­
casts. Measures of both should be available.
The need for our keeping watch on the
utility of our forecasts is self evident. As
for our technical skill, it may be too low
in some forecast products to be useful for
certain purposes. In such cases, we want to
know how we are progressing toward the goal
of utility, especially in the present era of
steady advances in the state of the art. The
modified threat score and measure of place­
ment error that I will develop here, are
intended to measure technical Skill, not
necessarily service value.

I should also add that a verification
statistic is only useful to the extent that
it agrees with the judgment of skilled
practicing meteorologists. ThUS,
verification statistics are not entirely
objective, for they ~re dccigncd and
selected sUbjectively. Like any other
statistic, the modified threat score and
measure of placement error must be judged
useful in order to be useful to us.
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One of my aims is to be able easily to
compute the modified threat score from the
past record. The only parameters that have
been measured and for which records have
been kept over the years at NNC are F, Q,
and H.

The modified threat score is designed to
require only these three parameters, and
only these are needed for placement error
for an individual case. For a set of cases
the number, N, of cases for which both F and
Q are not zero in the set will also be
needed to calculate placement error, but N
can easily be counted from available
records.

The approach I take is to model F and Q as
two circles with areas equal to F and Q
respectively; H is thus modeled 3S the area
of overlap, as shown in Figure 2.

It is evident from Figure 2 that, given a
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Figure 1. The effect of bias on threat score. The curves are cal.
culated from my model (Figure 2). The curve labeled TS shows
threat score with unit bias, and that labeled TS, , the threat
score with bias as shown by tne Bias curve. TS& is the maximum
threat score that can be achieved by increasing bias, given the
placement error, c, divided by the radius, b, of O. For biases
above the Bias curve shown, threat scores are lower than TS8 •
For biases above the Bias curve, the threat score is less than TS 1•

Q
F Figure 2. Model for calculating the modified

threat score and placement error. Forecast
events, F, and observed events, 0, are
represented as areaS of circles with radii a
and b, respectively. The placement error c
is the distance between the centers of the '
circles. ~Hits,~ i.e., events correctly
forecast is represented as H the
overlapping area. '
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AS a first guess, I use

and where v is the iteration count. As a
flag to readers, the law of sines was used
in deriving (4):

(av- O • TI/2) if F > Q

b ,_

sin 8 sin y
--,-
sin a

~O,

There are three cases for which c cannot be
determined with my model of circles, without
further assumptions. They are when the
circles do not intersect:

DETERMINATION OF PLACEMENT ERROR

In Figure 2, H is the area, £2a , of circular
sector CAD; plus the area, as, of circular
sector CBD, less the area of quadrilateral
ACBD. Because of the symmetry of ACBD about
line AB, its area is twice the area, 1/2 ab
sin y • of triangle ABC. But y -" - (a + B) ,
thus sin y • sin (a + S) • Therefore

and b, H will vary monotonically with c, so
long as circles A and B intersect. Thus,
given H, F, and Q, it is posssible to
determine c.

To modify the threat score, the placement
error, c, is first determined. Then holding
constant, the larger of F(a) and O(b) is
reduced to equal the other, thus changing
the bias to unity. The modified threat score
is then calculated from the new
configuration.

The cosine law gives

(2)

F

cos a • _O'c2__(",,2;;-~b2_)~
2b,

()) Case I. H=O.

cos S

Case III. H=F.Case II. H=Q.

a and S are functions of a,
parameters a and b are given

..'F

and therefore
b, and c. The
by

function of c,
can be solved for
on Newton's

DETERMINATION OF THE MODIFIED THREAT SCORE

For these cases, iteration (4) is not
required to find c.

c a + b
c - a - b
c :0: b - a

H • 0
H Q
H • F

H'
15 , • "'-".<,.--­-2Q - H'

For Case I.
For Case II.
For Case I II.

If F is greater than 0, then F' :0: 0 and a' ­
b, where the primes indicate modified
parameters. Then, from (I)

In each of these cases, I assume that the
two circles are tangent to each other. Thus
I assume the configuration most favorable to
the forecast in Case I, and least favorable
in the other two cases. The result is

(4)

H is thus a transcendental
and given F, 0, and H, (2)
c. The method I use, based
iteration is

v+1 " 1 [b
2

a
v + a 2Sv - H " 1c c ,- ,
b sin Q"

where

" -1 [ (c v)2 2 b2) va a cos - (a

2bcv

" -1 [ " b cos "S a cos , •,
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From (2), z. cosh-1 (c/(2a)}

H' - b 2 (2 0.' - sin 2 cr.')
The positive root is always taken for z.
Equation (5) then gives

Thus,

where q = sinh 2z - 2z,TS' •
20.' - sin 20.'

211 - (20.' - sin 20.')

TS'
-iq

211 + iq

Likewise, if Q is greater than F, then Q'
F and b ' • a, and

T5' • -

where from (3)

a' - cos-l (c/(2b)}

26' - sin 26'
TS' - "'c-=-"":o""'~~""-211 - (26' - sin 26')

(r)

Thus,

2
q + 2illq

2 2
411 + q

The function, q, by the way, is always
po~jtive for positive z. Instead of dealing
with complex numbers, I take the magnitude
of T5' as a negative modified threat score:

a

Cases can and do occur in which the two
circles in the modified configuration do not
overlap nor are tangent. The figure below
illustrates an example.

TS" is always negative, and it can easily be
shown that aTS"!<lc is always negative so
that a forecast 1s penalized in the modified
threat score by placement error, c. Also,
aTS"/aB or aTS"/ab is always positive for

F greater than Q or Q greater than F,
respectively, so that the smaller the
precipi tation areas, the lower the algebraic
threat score. In the limit when Q or F, but
not both, are zero the modified threat score
is TS" = -1, the minimum algebraic value for
TS". When both Q and F are zero, such cases
are simply not counted. The modified threat
score is thus nicely limited:

'7)
-1where 6' - cos (c/(2a)}

Q

-1 ~ TS", TS' ~ +1

In such cases,

if F > Q
if Q > F

c>2b and cos a' >1
c >2a and cos 6' > 1

Figure 3 shows the variation of TS" with c/b
(F > Q). TS" - -0.996 for c/b ~ 12, and
approaches -1 asymptotically as c/b
approaches infinity.

Cl' • 6' .. iz

for any z. I let

cos iz ., cosh z
sin 1z ., i sinh z

and a' .. 6' is therefore an imaginary
number, and TS' is a complex number. I note
that

SOtolE EXAMPLES

To get a feeling for how the threat score is
modified in practice using my model, I cal­
culated the modified threat score from the
annual records of QPF for the 1" area of
accumulated precipitation in the first 24
hours for the 10 years 1970-79. The records
are in the form of annual sums F, Q, and H.
I had the Quantitative precipitation Branch
count the number of days, N, in each year
for which both F and Q were not zero, and
then divided F, Q, and H by N before calcu­
lating. This was done so that the placement
error, c, would be in the same unit of
length that was used in the daily measure­
ments of the area, F,Q, and H. That unit of
length is a latitude degree.

Figure 4 shows the result. Although the
forecasts are substantially penalized in
varying amounts in the modified threat score

than F, bygreater
in (7),

of Q is
for 6'

where z is real. The parameter, z, is found,
in the case of F greater than Q, by
SUbstituting iz for a' into (6),

z • cosh-l{c/(2b)}

and in the case
SUbstituting iz
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for biases greater than one, especially so
for the years 1974-6, there remains a high
correlation between the two threat scores.
The table below shows the correlation coef­
ficient for the relationship, as well as for
others.

Table of correlation coefficients

!§. ~ .lli! ~ olb

TS 1

TS' +0.821

Bias +0.222 -0.374

0 -0.417 -0.688 +0.502

o/b -0.799 -0.9981 +0.408 +0.702.

The low correlation, 0.222, between Bias and
TS, and relatively high correlations between
c and TS and between c and Bias, support the
notion that the forecaster tends to include
more misses than hits when he increases the
bias. Also, to the extent that this notion
is correct, these correlations lend some
credibility to the placement error as a val­
id concept. The remarkably high correlation
between c/b and TS' is explained by the fact
that TS' is a function of c/b only, if F ~

0, which was true for all the years except
1972, when F z 0.988 O. The departure of the
correlation coefficient from unity mostly

reflects the departure of the function from
linearity, which is small because of the
relatively small range of the numbers given
(see the curve, TS1 , Figure 1). Note the
high negative correlation coefficient be­
tween c/b and TS. This points up the fact
that there is far more to be gained (in
terms of threat score) by the forecaster
reducing placement error relative to the
dimensions of 0 than by increasing the bias.

I also went to the daily NMC records for 24­
hr accumulated precipitation amounts veri­
fying at 1200 GMT for the first week of
January 1979. The table below shows a few of
my more interesting calculations.

SAMPLE OF THE DAILY RECORD (1979)

Note that TS' may be greater than TS, for
example, in the case of the excellent fore­
cast on January 3 for Day 1, for the
> l/Z" area. In that case, Figure 1 shows
that the forecaster actually hurt his threat
score, even with a bias as close to unity as
1.2. On the other hand, with a forecast not
quite as good, on Jan I, Day 1, ~ l/Z",
TS' is the same as TS with the accuracy
shown, although the bias is higher, 1.3.

In conclusion, use of the modified threat
score developed here appears to be a good
way of removing the effect of bias on threat
score, and the placement error appears to be
related to skill in locating precipitation
areas.

Sample of the daily record (1979)

AIQount
Date !2.l F 9 H Bias T5 TS',TS" c c/b

Jan 1 Day 1 I" 148.2 114.4 100.8 1. 295 0.623 0.623 2.214 0.367
3" 3.3 1. S 0 2.200 0 -0.074 1. 716 2.483

Jan 2 Day 1 1" 59.5 51. 7 39.6 1.151 0.553 0.545 1.895 0.467
3" 3.2 0 0 - 0 -1 1.009 -

Jan 3 Day 1 I" 61. 5 51. 2 50.5 1. 201 0.812 0.841 0.548 0.136
Jan 3 Day 1 2" 8.' 1.9 1.7 4.421 0.198 0.110 1.071 1.317
Jan 3 Day 1 3" 0 0.1 0 0 0 -1 0.178 1

Jan S Day 1 I" 10.5 2.6 0.2 4.038 0.016 -0.134 2.469 2.114
Jan S Day 2 I" 17.1 2.6 0 6.577 0 -0.419 3.243 3.565

Jan 6 Day 1 1" 1.0 7.2 0.' 0.139 0.051 -0.153 1.569 1. 036
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