ESTIMATING VISIBILITY OVER THE NORTH PACIFIC OCEAN USING MODEL OUTPUT STATISTICS

Robert J. Renard (1) and William J. Thompson (2) Department of Meteorology Naval Postgraduate School Monterey, California 93943

ABSTRACT

The method of model output statistics (MOS) is used to develop multiple linear regression equations for forecasting the probability of marine visibility in five categories (0-.49, 0.5-1.9, 2-9.9, 10-19 and 20-50 km) at 24-h intervals to 48-h, for the summer season, North Pacific Ocean area. Further manipulation of the scheme yields categorical visibility forecasts for three (0-1.9, 2-9.9, 10-50 km) and two (0-9.9, 10-50 km) visibility categories. Dependent and independent tests are verified using percentage correct, bias, Heidke skill score and threat score. The experiment establishes the credibility of MOS applications over open ocean areas, with levels of skill commensurate to those for MOS visibility forecasts over land.

1. INTRODUCTION

Although fog and visibility forecast schemes abound for coastal locations, the fog and visibility forecast open ocean has been largely ignored. These kinds of forecasts are of particular importance in order to safely execute maritime shipping and naval sea/air opera-Maritime casualties due to fogtions. related low visibility are highest in the summer months (Figure 1) when the combination of extent and density of fog is at a maximum (3,4). Since the ongoing computerized atmospheric prediction models do not output visibility directly, a reasonable approach to forecasting visibility is through the use of Model Output Statistics (MOS) (5). For the experiment reported on here, the North Pacific Ocean (30-60N, 145E-130W) was selected as the test basin, with various Fleet Numerical Oceanography Center (FNOC), Monterey, CA analysis and prediction models supplying the basic Model Output Parameters (MOP) from a 23x12 section of FNOC's Northern Hemisphere 63x63 polar stereographic grid. Verification of the developed MOS forecast scheme is compared to that using visibility climatology (3), visibility persistence, and a limited sample of National Weather Service MOS visibility forecasts for the continental United States (6).

2. DATA/PARAMETERS

The surface ship observational data from the North Pacific Ocean were obtained from the Naval Oceanography Center Detachment, Asheville NC, which is co-located with the National Climatic Data Center (NCDC). These data, Tape Data Family-11 (TDF-11), which are filtered to exclude duplications and erroneous reports, are a compilation of information from ships' logs, ships' weather reporting forms, published ship observations, automatic observing buoys, teletype reports and data purchased from foreign meteorological services. The quality varies from those observations taken by a deckhand to those of a trained observer. Data at 0000 GMT (local daylight) for the summer months July/August 1979 served as the dependent/independent data set. Over 4000 synoptic ship reports were available for each month.

The basic set of MOP's consists of 24 diagnostic-prognostic parameters generated from FNOC's Mass Structure Analysis Model and the Primitive Equation, Marine Wind and Ocean Wave Prediction Models. An additional 79 interactive and derived dynamic and thermal parameters, continuous and binary, were obtained from this set. Appendix (A) is a selected list of those model output and climatology parameters used in developing the MOS equations.

3. PROCESSING THE DATA AND DEVELOPMENT OF REGRESSION EQUATIONS

The first step consisted of interpolating the MOP's and derived parameters (via a curvilinear bi-cubic spline routine) from the FNOC grid to each ship position, where they were matched to the respective visibility code. These interpolated parameters (predictors) were then used in the stepwise multiple linear regression program BMDP2R (7) to derive five equations, the predictands of which are parameters indicating the five visibility ranges shown in Table I.

REGRESSION EQUATION (Visibility category)	VISIBILI RANGE	ΓY	SYNOPTIC OBSERVATION CODE	
1	0.0- 0.49	km	90-92	
2	0.5- 1.9	km	93-94	
3	2.0- 9.9	km	95-96	
4	10.0-19.0	km	97	
5	20.0-50.0	km	98-99	

Table I. Visibility categories

A comparison of open ocean visibility | existing problem in working with visibility forecasting using MOS, in one case with a categorical predictand (8) and in the other case with a probabilistic predictand (9,10), indicated the desirability of the latter approach. The remainder of this paper will focus on the probabilistic visibility approach. Table II indicates the predictand values assigned to each ship observation as a function of reported visibility, for each of the five regression equations developed.

	1	ISIBIL FORECAS EOUATIO	ST		SYNOPTIC OBSERVATION CODE
		-			0022
(1)	(2)	(3)	(4)	(5)	
100	25	0	0	0	90
100	50	0	0	0	91
100	75	25	0	0	92
75	100	50	0	0	93
50	100	75	25	0	94
25	75	100	50	25	95
0	50	100	75	50	96
0	25	75	100	75	97
0	0	50	75	100	98
0	0	25	50	100	99

Table II. Table II. Visibility probability (%) (= predictand) assigned to each synoptic ship observation as a function of reported visibility, for each of the five regression equations developed.

For example, in deriving the equation for specifying visibility category 3 (see Table I), observations coded as 95 or 96 were assigned a predictand value of 100%, those with codes 94 and 97 a value of 75%, codes 93 and 98 a value of 50%, and so forth. <u>Ideally</u>, the predictand used in developing that equation should be 100% in for all observations in codes 95 and 96 and 0% for <u>all</u> other visibility codes (i.e. 90 to 94 and 97 to 99). But, it is commonly accepted that visibility observations at sea are inexact at best (i.e. code 95 may be reported when in fact code 94 was observed, etc.). The ideal approach was tried first but it was not as successful as assigning to the predictand percentages other than 0% to visibility codes outside of the category to which the equation applies, in this case category (3). Several variations for predictand assignment were tried, such as 80% for code 94, 60% for code 93, 30% for code 92; and similarly for codes 97, 98 and 99. Considering all equations, it was most methodical and the success of the technique was best when using the guartile reduction approach, that is reducing the predictand value by 25% increments in either direction from the codes defining the category. Table II entries should not be viewed horizontally -- only vertically, and, of course, the percentages should not add up to 100% or any other prescribed value. This is an experimental quantitative approach to an observations at sea.

Three sets of five equations each: a diagnostic set (tau 0 h) and two prognostic sets (tau 24 and 48 h), were derived (10) from the July 1979 data set (Tables III, IV and V). Only those predictors that contributed at least 0.5% to the explained variance of the predictand were retained. The evaporative heat flux (EHF) is prominent in all equations. The majority of explained variance was determined by this one parameter whenever it was the leading parameter. Negative (positive) EHF implies that the moisture flux is directed downward toward (upward from) the sea and is associated with low (high) visibility. It is evident that the visibility class 2-9.9 km is the most difficult to specify from the available FNOC predictor parameters.

eters.	U.S. Tetal alla		
VIS CODE	VISIBILI		R ²
GROUP	PROBABIL	ITY	(percent)
90-92	-35.1586		
(049 km)	-0.9191	EHF	18.6
	43.9857	FTER	2.6
	0.0039	RASTDX	1.3
	0.0048		1.0
	0.5606	BVISX	0.9
	0.0255	RASTDR	0.6
			25.0
93-94	356.8071		
(0.5-1.9 km)	-1.6095	EHF	19.0
	-1.1414	BVISR	6.2
	28.4439	FTER	1.2
	0.4441	BVISX	0.7
	0.0047		0.5
	-0.3126	PS	0.5
			28.1
95-96	129.1194		
(2-9.9 km)	-0.9573	BVISX	5.0
	-0.6316	RHX	1.2
	-0.4581	ASTDRX	1.4
			7.6
97	75.6061		
(10-19 km)	0.5649	EHF	14.8
	-38.1213		2.2
	-0.9247	BVISX	1.7
	0.7383		1.4
	-0.0237		0.8
	0.0041	U925	0.5
			21.4
98-99	57.5600		
(20-50 km)	1.9054		22.8
	1.4265		5.4
	-40.5343		1.6
	-0.6891		1.2
	0.0056	U925	0.6
			31.6

Table III. Regression equations for estimating visibility probability, by visibility code-group for the North Pacific Ocean 30-60N 145E-130W, Tau 0 h (4079 observations, July 1979). Variables for initial R² time listed in order of selection. specifies variance explained by each predictor. See Appendix A for parameter description.

VIS CODE	VISIBILITY	R ²	97	497.9680	
GROUP				1.5811 EHF 36	16.0
GROOT	1 KODIDIGI II	(Poroono)		-19.7227 FTER 00	1.2
			1	0.4588 UCOMP 48	1.0
90-92	18.6298			40.4127 GGTHTA 36	0.8
(049 km)	-1.9898 EHF 24	23.0	1 a 1	-18.4243 FTER 48	0.7
	0.0213 RASTDX 00	2.0		-0.4210 PS 48	0.6
	19.9026 FTER 00	1.0	1.1	-0.1205 ASDXSQ 00	0.7
	-0.5685 VVWW 36	0.6	CORE LA		21.0
	17.9254 FTER 24	0.5	98-99	560.3628	
		27.1	(20-50 km)	0.8640 EHF 36	23.7
93-94	32.5351	22.2			1.6
(0.5-1.9 km)	-2.0482 EHF 24	23.2		-21.1406 FTER 48 5.0147 TSEA 00	1.4
	-0.5285 BVISR 00 0.0204 RASTDX 00	2.2	1. Sec. 1.	-3.7253 EX 48	1.2
	18.4725 FTER 24	0.7	1 S. S. S. S.	-0.4837 PS 36	0.8
	10.4/25 FIER 24	27.4		-0.4037 15 50	29.9
95-96	137.1898	27.3	mable II de		
(2-9.9 km)	-1,2913 BVISX 00	3.0		me as Table IV except '	l'au 48 h
(2-5.5 km)	-19.4424 FTER 00	1.6	(4102 observa	ations).	
	-0.5658 RHX 00	1.2	The forecast	goal is to identify	the one
	-5.8802 EHF 24	0.9		category of visibility	
	-0.6511 VVWW 00	0.7		tau 0, 24 and 48 h.	
		7.4		comparisons of the pr	
97	61.9611			s (P) computed from	
(10-19 km)	1.5293 EHF 24	18.2		gression equations ind	
· · · · · · · · · · · · · · · · · · ·	-0.0210 RASTDX 00	2.2		sirable focusing of t	
	-14.9147 FTER 00	0.7		bility category (i.e.	
	0.5736 VVWW 36	0.7		be forecasted). For	
	-16.5002 FTER 24	0.5		computed P among the f	
		22.3		not necessarily exc	
98-99	63.5259			eshold probability (
30-33					
(20-50 km)	2.8336 EHF 24	28.3			VI), is
	2.8336 EHF 24 -0.0245 RASTDX 00	28.3 1.8	that catego	ry. Here Pt (Table	VI), is gory and
			that catego defined, for	ry. Here P _t (Table : each visibility cate	gory and
	-0.0245 RASTDX 00	1.8	that catego defined, for time interva	ry. Here P _t (Table each visibility cate al, as that predictand	gory and 1 proba-
(20-50 km) Table IV. Sau	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce	1.8 1.2 0.7 32.0 Tau 24	that catego defined, for time interva bility which occurrence a gorical vis here maximiz	ry. Here P _t (Table each visibility cate al, as that predictand h best separates fore and nonoccurrence of t ibility event. The ces the threat score (gory and l proba- casts of he cate- Pt used Appendix
(20-50 km) Table IV. San h (4095 obse parameter ind	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24	1.8 1.2 <u>0.7</u> 32.0 pt Tau 24 following (00) or	that catego defined, for time interva bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P ² /Pt the most li	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The ces the threat score (b category. These of the definition of a function of P, P_t (T, egression equation (vi In the experimental for acts to suitably kely visibility catego	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or 8) in h. R ²	that categoride categories of the categories of the categories of the categories of the category of the categ	ry. Here Pt (Table each visibility cate al, as that predictand h best separates fore and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, Pt (T. egression equation (vi In the experimental fo acts to suitably kely visibility catego Pt in the denominator	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or 18) in h. R ² (percent)	that categoride categories of the set of th	ry. Here Pt (Table each visibility cate al, as that predictand h best separates fore and nonoccurrence of t ibility event. The est the threat score (h category. These of to the definition of a function of P, Pt (T. egression equation (vi In the experimental fo acts to suitably kely visibility catego Pt in the denominator and the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or 88) in h. R ² (percent) 20.9	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The ces the threat score (be category. These of the definition of a function of P, P_t (T, egression equation (vi In the experimental for acts to suitably kely visibility catego P_t in the denominator one the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when c serves
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or 88) in h. R ² (percent) 20.9 2.0	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification	ry. Here Pt (Table each visibility cate al, as that predictand h best separates fore and nonoccurrence of t ibility event. The est the threat score (h category. These of to the definition of a function of P, Pt (T. egression equation (vi In the experimental fo acts to suitably kely visibility catego Pt in the denominator and the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or (8) in h. R ² (percent) 20.9 2.0 1.1	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The ses the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental fo catts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$:	gory and d proba- casts of he cate- Pt used Appendix consider- decision able VI) sibility rm shown identify ry when c serves for best
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or (8) in h. R ² (percent) 20.9 2.0 1.1 5 1.0	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for the the decision ratio the the decision ratio the the decision ratio the the decision the the DECISION THRESHOLD	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when c serves for best
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or 18) in h. R ² (percent) 20.9 2.0 1.1 5 1.0 1.0	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification l) For REGRESSION EQUATION	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The ses the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental fo catts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$:	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when c serves for best
(20-50 km) Table IV. Sau h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or 18) in h. R ² (percent) 20.9 2.0 1.1 5 1.0 1.0 0.6	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION EQUATION (visibility	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for the the decision ratio the the decision ratio the the decision ratio the the decision the the DECISION THRESHOLD	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when c serves for best
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or 18) in h. R ² (percent) 20.9 2.0 1.1 5 1.0 1.0	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each reac category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification l) For REGRESSION EQUATION (visibility category)	ry. Here P_t (Table each visibility cate al, as that predictand best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility catego P _t in the denominator the decision ratio P/Pt \geq 1: DECISION THRESHOL RATIO TAU 0, 24	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48 -353.1233	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION EQUATION (visibility	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for the the decision ratio the the decision ratio the the decision ratio the the decision the the DECISION THRESHOLD	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION EQUATION (visibility category) 1	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The ces the threat score (the category. These of the definition of a function of P, P _t (T. egression equation (vi In the experimental fo acts to suitably kely visibility catego P _t in the denominator one the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE , 48 h
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00	1.8 1.2 0.7 32.0 Pt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each reac category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification l) For REGRESSION EQUATION (visibility category)	ry. Here P_t (Table each visibility cate al, as that predictand best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility catego P _t in the denominator the decision ratio P/Pt \geq 1: DECISION THRESHOL RATIO TAU 0, 24	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE , 48 h
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu- verification 1) For REGRESSION EQUATION (visibility category) 1 2	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The each threat score (h category. These of to the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility categor P _t in the denominator one the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ory when serves for best D VALUE . 48 h
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION EQUATION (visibility category) 1	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The ces the threat score (the category. These of the definition of a function of P, P _t (T. egression equation (vi In the experimental fo acts to suitably kely visibility catego P _t in the denominator one the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ory when serves for best D VALUE . 48 h
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu- verification 1) For REGRESSION EQUATION (visibility category) 1 2	ry. Here P_t (Table : each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for acts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$: DECISION THRESHOLL RATIO TAU 0, 24 P^2/Pt 57, 54 $P^2/1.1$ Pt 59, 55 $P^2/0.9$ Pt 45, 34	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify rry when serves for best D VALUE . 48 h . 62 . 60 . 33
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu- verification 1) For REGRESSION EQUATION (visibility category) 1 2	ry. Here P_t (Table each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The each threat score (h category. These of to the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility categor P _t in the denominator one the decision ratio	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE . 48 h . 62 . 60 . 33
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led tr ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification 1) For REGRESSION EQUATION (visibility category) 1 2 3 4	ry. Here P_t (Table : each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for acts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$: DECISION THRESHOLL RATIO TAU 0, 24 P^2/Pt 57, 54 $P^2/0.9 Pt$ 45, 34 $P^2/1.1 Pt$ 42, 47	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE . 48 h . 62 . 60 . 33 . 39
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 36 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00 145.7690	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu- verification 1) For REGRESSION EQUATION (visibility category) 1 2	ry. Here P_t (Table : each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vi In the experimental for acts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$: DECISION THRESHOLL RATIO TAU 0, 24 P^2/Pt 57, 54 $P^2/1.1$ Pt 59, 55 $P^2/0.9$ Pt 45, 34	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE . 48 h . 62 . 60 . 33 . 39
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00 145.7690 -1.3323 BVISX 00	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led t ratio as a for each re category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tu verification 1) For REGRESSION EQUATION (visibility category) 1 2 3 4 5	ry. Here P_t (Table : each visibility cate al, as that predictand h best separates fored and nonoccurrence of t ibility event. The tes the threat score (h category. These of to the definition of a function of P, P_t (The egression equation (vind) In the experimental for acts to suitably kely visibility categor P_t in the denominator ine the decision ratio $P/Pt \ge 1$: DECISION THRESHOLL RATIO TAU 0. 24 P^2/Pt 57. 54 $P^2/1.1 Pt$ 59. 55 $P^2/0.9 Pt$ 45. 34 $P^2/1.1 Pt$ 42. 47 P^2/Pt 49. 45	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ry when serves for best D VALUE . 48 h . 62 . 60 . 33 . 39
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MEVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00 145.7690 -1.3323 BVISX 00 -1.1001 VVWW 00	1.8 1.2 0.7 32.0 Ppt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led tr ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification 1) For REGRESSION EQUATION (visibility category) 1 2 3 4 5 2) For	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The each threat score (be category. These of the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility catego P _t in the denominator one the decision ratio P/Pt \geq 1: DECISION THRESHOL RATIO TAU 0, 24 P ² /Pt 57, 54 P ² /1.1 Pt 59, 55 P ² /0.9 Pt 45, 34 P ² /1.1 Pt 42, 47 P ² /Pt 49, 45 P/Pt < 1, use P/Pt.	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify ory when serves for best D VALUE . 48 h . 62 . 60 . 33 . 39 . 42
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number licates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MBVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00 1.3323 BVISX 00 -1.3323 BVISX 00 -1.1001 VVWW 00 -0.6430 RHX 00	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led tr ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification 1) For REGRESSION EQUATION (visibility category) 1 2 3 4 5 2) For Table VI. T	ry. Here P_t (Table each visibility cate al, as that predictand best separates fored and nonoccurrence of t ibility event. The set the threat score (the category. These of the definition of a function of P, P_t (The egression equation (vi In the experimental for acts to suitably kely visibility catego P_t in the denominator one the decision ratio $P/Pt \ge 1$: DECISION THRESHOL RATIO TAU 0, 24 P^2/Pt 57, 54 $P^2/1.1 Pt$ 59, 55 $P^2/0.9 Pt$ 45, 34 $P^2/1.1 Pt$ 42, 47 P^2/Pt 49, 45 P/Pt < 1, use P/Pt . The most likely visibil	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify rry when c serves for best D VALUE . 48 h . 62 . 60 . 33 . 39 . 42 ity cat-
(20-50 km) Table IV. San h (4095 obse parameter ind prediction int VIS CODE GROUP 90-92 (049 km) 93-94 (0.5-1.9 km)	-0.0245 RASTDX 00 0.5113 BVISR 00 -21.7912 FTER 24 me as Table III exce rvations). Number icates initial time terval (12, 24, 36, 4 VISIBILITY PROBABILITY -428.6230 -1.8534 EHF 36 27.3651 FTER 00 25.8898 FTER 48 -48.3218 GGTHTA 30 0.4235 PS 36 0.4132 MEVIS 48 -353.1233 -1.0305 EHF 36 0.2561 CLIMO 00 22.6730 FTER 48 -0.4162 BVISR 00 0.3658 PS 24 0.0146 RASTDX 00 145.7690 -1.3323 BVISX 00 -1.1001 VVWW 00	1.8 1.2 0.7 32.0 pt Tau 24 following (00) or (00)	that category defined, for time interva- bility which occurrence a gorical vis here maximiz B) for eac ations led tr ratio as a for each re- category). here, P^2/P_t the most li $P \ge P_t$; Const to finely tw verification 1) For REGRESSION EQUATION (visibility category) 1 2 3 4 5 2) For Table VI. T egory at a	ry. Here P_t (Table each visibility cate al, as that predictand best separates fore and nonoccurrence of t ibility event. The each threat score (be category. These of the definition of a function of P, P _t (T. egression equation (vi In the experimental for acts to suitably kely visibility catego P _t in the denominator one the decision ratio P/Pt \geq 1: DECISION THRESHOL RATIO TAU 0, 24 P ² /Pt 57, 54 P ² /1.1 Pt 59, 55 P ² /0.9 Pt 45, 34 P ² /1.1 Pt 42, 47 P ² /Pt 49, 45 P/Pt < 1, use P/Pt.	gory and d proba- casts of he cate- Pt used Appendix onsider- decision able VI) sibility rm shown identify rry when c serves for best D VALUE . 48 h . 62 . 60 . 33 . 39 . 42 ity cat- category

National Weather Digest

Even with minor statistical adjustments to the threshold values (Pt), low verification scores indicate that the initial MOS scheme developed here, which is verified to differentiate between five visibility categories, is operationally unusable. Table VII illustrates this fact for 24 h MOS visibility forecasts.

From the perspective of using the MOS scheme to forecast Navy carrier flight operations, it appeared advisable to collapse the five categories into three. Such a scheme approximates the primary visibility conditions for the launch and recovery of fixed-wing aircraft over the open ocean (11). In carrying out this modification, the original five regression equations and decision ratio calculations were retained, but for estimation and verification purposes the visibility categories were recombined in the following manner:

CATEGORIES 1 and 2 \longrightarrow CATEGORY 1a (0-1.9 km) CATEGORY 3 \longrightarrow CATEGORY 2a (2.0-9.9 km) CATEGORIES 4 and 5 \longrightarrow CATEGORY 3a (10-50 km)

Visibility		ESTI	MATE	D		_
Category	(1)	(2)	(3)	(4)	(5)	TOTAL
(1)	219	206	3	49	64	541
(2)	139	166	18	71	70	464
OBSERVED(3)	83	130	71	186	118	588
(4)	65	90	29	282	232	698
(5)	104	145	9	595	951	1804
TOTAL	610	737	130	1183	1435	4095
BIAS	1.	13; 1	.59;	0.22;	1.69	; 0.80
PERCENT CO	RRECT	=	41			
HEIDKE SKI	LL SC	ORE =	0.28	30; 0.	160;	0.154;
			0.10	09; 0.	323	
			(ove	erall	0.218)
THREAT SCO	RE	=	0.23	35; 0.	160;	0.110;
			0.17	76; 0.	416	

Table VII. Verification matrix of visibility estimates using MOS, five categories. 24 h forecasts, July 1979 dependent data set, North Pacific Ocean 30-60N 145E-130W. (Pt), from Table VI, modified as follows: 54, 65, 24, 57, 45 for categories 1-5, respectively. Three-category verification results for both the dependent (July 79) and independent (August 79) 24 h forecasts appear in Table VIII.

TTCTDT		ENT TEST						
VISIBI			1000	STIMA				
CATEG				2a)				TOTAL
								979
OBSERVED		183		83				
		329		60				
	TOTAL	1163	1	.91	2	610		3964
	BIAS		=	1.19	; (0.3	4;	1.08
P	ERCENT	CORRECT						
		L SCORE			4:	ο.	159	:
				0.47	1000			3 8 .3
				(ove	ra	11	0.4	17)
TH	REAT SC	ORE		0.43				
				0.66				·
т	NDFPFNF	ENT TEST	г 7	UICUS	т ·	197	0	
		UNIT TUDI	r 1	10000			-	
and the second se	LITY		ES	TTMA	TFI			
VISIBI		(1a)		STIMA		-		TOTAL
VISIBI	ORY		(2	2a)	(:	3a)		
VISIBI CATEG	ORY (la)	464	(2	2a) 51	(3a) 316		TOTAL 831
VISIBI	ORY (1a) (2a)	464 129	(2	2a) 51 48	(3a) 316 308		831 485
VISIBI CATEG	ORY (la) (2a) (3a)	464 129	(2	2a) 51 48	(3a) 316 308 544		831
VISIBI CATEG	ORY (1a) (2a) (3a) TOTAL	464 129 276	(2	2a) 51 48 47 L46	(: 2(3 :	3a) 316 308 544 268		831 485 2967 4283
VISIBI CATEG DBSERVED	ORY (1a) (2a) (3a) TOTAL BIAS	464 129 276 869	(2	2a) 51 48 47 L46 1.05	(: 2(3 :	3a) 316 308 544 268		831 485 2967 4283
VISIBI CATEG DBSERVED P	ORY (1a) (2a) (3a) TOTAL BIAS ERCENT	464 129 276 869 CORRECT	(2	2a) 51 48 47 L46 1.05 74	(2 3 ; (3a) 316 308 544 268 0.3	0;	831 485 2967 4283 1.10
VISIBI CATEG DBSERVED P	ORY (1a) (2a) (3a) TOTAL BIAS ERCENT	464 129 276 869	(2	2a) 51 48 47 146 1.05 74 0.43	(3 20 32 ; (4;	3a) 316 308 544 268 0.3	0;	831 485 2967 4283 1.10
VISIBI CATEG DBSERVED P	ORY (1a) (2a) (3a) TOTAL BIAS ERCENT	464 129 276 869 CORRECT	(2	2a) 51 48 47 L46 1.05 74	(: 2(3; ; () 4; 5;	3a) 316 308 544 268 0.3 0.	0; 105	831 485 2967 4283 1.10
VISIBI CATEG DBSERVED P HEID	ORY (1a) (2a) (3a) TOTAL BIAS ERCENT	464 129 276 869 CORRECT L SCORE	(2)	2a) 51 48 47 146 1.05 74 0.43 0.44	(3 3 ; (4; 5; ra	3a) 316 308 544 268 0.3 0.	0; 105 0.3	831 485 2967 4283 1.10 ; 85)

Table VIII. Verification matrices, 24 h forecasts, three-category visibility estimates, MOS scheme North Pacific Ocean 30-60N 145E-130W July 1979 dependent and August 1979 independent data sets.

Compared to the five-category verification, the biases for categories 1a and 3a are much nearer to the desired value of 1.0, and percent correct and skill score have increased markedly. While the results for categories 1a and 3a showed considerable improvement, biases in category 2a indicate that this middle category is considerably underforecasted. 48 h MOS forecasts behave similarly.

NWA Charter Co	rporate Members
ACCU-WEATHER, INC.	MOUNTAIN STATES WEATHER SERVICES
ALDEN ELECTRONICS, INC.	TEXAS A&M UNIVERSITY
AUDICHRON	THE WEATHER CHANNEL
INTERCON WEATHER CONSULTANTS, INC.	WEATHER CENTRAL, INC.
KAVOURAS, INC.	WEATHER CORPORATION OF AMERICA
LIGGETT BROADCAST GROUP	WSI CORPORATION
	ZEPHYR WEATHERTRANS, INC.

In view of the continued problem with the 4. VISIBILITY PERSISTENCE AND CLIMATOLOGY visibility range 2.0 to 9.9 km, there followed a further recombination of cate-Persistence is an often used forecast comgories 1, 2 and 3. Forecast detail is parison scheme. The visibility persisreduced and verification scores enhanced. tence parameter developed at NPS is dependent on the MOS diagnostic visibility pa-CATEGORIES 1,2 and 3 -> CATEGORY 1b (0-9.9km) rameter and the observed value of visibil-CATEGORIES 4 and 5 -> CATEGORY 2b (10-50km) ity. In particular, visibility values from the July MOS scheme were used to ini-DEPENDENT TEST JULY 1979 (24 h forecast) tialize the polar stereographic grid field VISIBILITY ESTIMATED on a daily basis for that month. This CATEGORY (1b) (2b) TOTAL. field was then modified by the current (1b) 965 579 1544 visibility observations of surrounding 2420 OBSERVED (2b) 389 2031 ships, using an objective analysis based TOTAL 1354 2610 3964 upon an inverse-distance formula. changed field values were then re-inter-= 0.88; 1.08 BIAS polated back to the original ship posi-PERCENT CORRECT = 76 tions using a curvilinear bi-cubic spline HEIDKE SKILL SCORE = 0.475 routine. Table X indicates the skill of = 0.499; 0.677 THREAT SCORE the persistence field for initial, 24 and 48 h forecast times. INDEPENDENT TEST AUGUST 1979 (24 h forecast) ESTIMATED VISIBILITY CATEGORY (1b) (2b) TOTAL 692 1316 (1b) 624 JULY AUGUST OBSERVED (2b) 323 2644 2967 00 h 0.598 0.614 TOTAL 1015 3268 24 h 4283 0.327 0.360 48 h 0.241 0.260 BIAS = 0.77; 1.10 PERCENT CORRECT = 78 Table X. Heidke skill scores using a per-HEIDKE SKILL SCORE = 0.445 sistence parameter for visibility esti-THREAT SCORE = 0.422; 0.736 mates at 00, 24 and 48h, July and August 1979. DEPENDENT TEST JULY 1979 (48 h forecast) VISIBILITY ESTIMATED (2b) CATEGORY TOTAL. (1b) (1b) 885 634 1519 The skill scores are less than desirable, OBSERVED (2b) 391 1924 2315 in part because grid-point values are not 2558 TOTAL 1276 3834 good indicators of local visibility conditions whenever there are large variations = 0.84; 1.10 BIAS in the reported visibility at ship loca-PERCENT CORRECT = 73 tions surrounding a grid point. The larger the gross-mesh size, the greater HEIDKE SKILL SCORE = 0.425 THREAT SCORE = 0.463; 0.652 the number of ship reports that are interpolated to each grid point and the greater INDEPENDENT TEST AUGUST 1979 (48 h forecast) the likelihood of large variations. Nevertheless, if the 'Persistence' param-VISIBILITY ESTIMATED CATEGORY (1b) (2b) TOTAL eter developed here is in any way descrip-557 678 1235 (1b) tive of persistence, it does indicate that persistence is not useful for forecasting 322 OBSERVED (2b) 2548 2870 TOTAL 879 3226 4105 open-ocean visibility. As evidence, note the rapid decrease in skill score for the BIAS = 0.71; 1.1224- and 48-h forecasts (Table X). A vis-PERCENT CORRECT = 76 ibility climatology frequency parameter HEIDKE SKILL SCORE = 0.369 was also derived for each Marsden square = 0.358; 0.718 THREAT SCORE (10 lat x 10 long) using data received from NCDC Asheville (3). Instead of using Table IX. Verification matrices, 24 and climatological average visibilities (since 48 h forecast; two-category visibility these averages are biased toward good visestimates, MOS scheme North Pacific Ocean ibility), weighted values, using a per-centage of each visibility category, were 30-60N 145E-130W July 1979 dependent and August 1979 independent data sets. tried. In either case, there is an over-whelming tendency for the climatology pa-A graphical measure of the utility and rameter to over-forecast good visibility credibility of the two or three category scheme is shown by Figure 2, in which an and the results were of little use, either alone or in combination with persistence analysis of the categorized visibility or the MOS scheme.

These

bilities.

observations for 0000 GMT 18 July 1979 is compared to the 24 h MOS-estimated visi-

5. FINAL REMARKS

Model output statistics, as a forecast scheme, has been in use for nearly a decade in the National Weather Service (NWS). To date, applications have been exclusively over land. The subject experiment with marine visibility and another with marine fog (12) indicates the applicability of MOS over the open ocean, with verification scores comparable to those published by NWS for MOS over continental U.S. (See 6 for example.) At the time of this writing, the U.S. Navy is developing plans for the extensive use of MOS forecasting over its marine area of responsibility -- the oceans of the world.

Another measure of the operational skill of the MOS technique proposed here is to compare the machine generated objective MOS forecasts to their subjectively prepared counterparts. MOS forecasts can be archived readily for future study, as is done by the NWS for land areas. However, manually prepared forecasts for visibility at specified ocean locations have not been collected and processed in the past, but, of course, should be in the future. Published comparisons of the two types of forecasts will be necessary if the operational forecaster is to properly use the MOS guidance and, indeed, improve on it.

ACKNOWLEDGEMENT

The authors wish to acknowledge the developmental MOS work on marine visibility forecasting by W. T. Aldinger and H. D. Selsor during their Master-of-Science thesis effort (R. J. Renard, advisor) at the Naval Postgraduate School. The Naval Air Systems Command via the Naval Environmental Prediction Research Facility funded the research effort of the authors.

APPENDIX A

MODEL OUTPUT PARAMETER (MOP) DESCRIPTIONS

Continuous and binary (limits), direct and derived, Fleet Numerical Oceanography Center MOP's and climatology used in the development of the multiple linear regression equations shown in Tables III, IV and V.

Legend: <u>Models</u> -- a) analysis model; b) Northern Hemisphere primitive equation and c) marine wind models (parameters available at 12-h intervals from initial time to 48 h). Descriptive Title of Each Parameter --

A. Direct Model Output Parameters

EAIR;a	Surface Vapor Pressure
EHF; b	Evaporative Heat Flux
EX;b	Surface Vapor Pressure
FTER; b, c	Advective Fog Probability
GGTHETA; b	Front-Location Parameter
PS;a	Sea-Level Pressure
SSANOM; a	Sea-Surface Temperature
	Anomaly from Monthly Mean
TAIR; a	Surface Air Temperature
TSEA; a	Sea-Surface Temperature
TX;b	Surface Air Temperature
U925;b	Zonal Wind 925 mb
VVWW;c	Marine Wind Speed

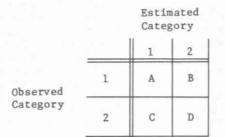
B. <u>Dynamic/Thermal Parameters Derived from</u> Model Output Parameters

TAIR-TSEA
TX-TSEA
Infrared Extinction
Parameter
Infrared Extinction
Parameter
Modified IR Extinction
Parameter
Relative Humidity from
EAIR & TAIR
Relative Humidity from
EX & TX
Zonal Wind Component

C. Combination Model Output Parameters

ASDXSQ	=	ASTDX		ASTDX
ASTDRX	=	ASTDR	•	ASTDX
RASTDR	1 × 1	RHR		ASTDR
RASTDX	=	RHR	•	ASTD
RHRSQ	=	RHR	•	RHR

D. <u>Climatology</u>


CLIMO

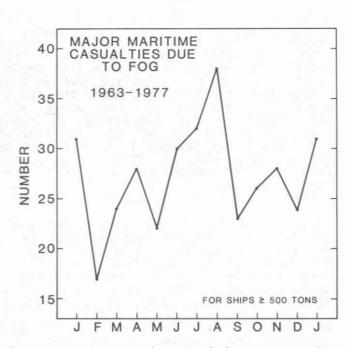
Marine Fog Frequency

APPENDIX B

VERIFICATION SCORE FORMULAE

Definitions of the verification score formulae used in the study follow. A 2x2 contingency table illustrates the observation/estimation data basic to the definitions.

Total (T) = A + B + C + D


No. of Correct Forecasts (FC) = A + DHeidke Skill Score (HSS) = $\frac{FC - EX}{T - EX}$,

Range of HSS:
$$\frac{-2BC}{B^2 + C^2} \leq HSS \leq 1$$
,

where correct number of estimates due to chance = (EX) = $\frac{(A+B)(A+C) + (D+B)(D+C)}{m}$

Threat (TS) = $\frac{A}{T - D} = \frac{A}{A + B + C}$

Range: 0<TS<1

FIGURES

Figure 1. 323 major maritime casualties due to fog-associated low visibility for ships \geq 500 tons (1963-77), derived from data furnished by the National Climatic Data Center, Asheville, N.C. Casualty data generally from ships operating in the Northern Hemisphere.

Figure 2. Objective analysis of regression-estimated visibility categories, three and two-category schemes, Tau 24 h, verifying at 0000 GMT 18 July 1979: Light solid lines (Area: < 2 = Category 1a (0-1.9 km); 2-3 = Category 2a (2-9.9 km); ≥ 3 = Category 3a (≥ 10 km)). <3 = Category 1b = sum of Categories 1a and 2a (0-9.9 km). National Weather Service Sea-Level Pressure Analysis: dashed lines, 8 mb interval (16 = 1016 mb); Surface Fronts:

FOOTNOTES AND REFERENCES

1. Robert J. Renard earned his MS in Meteorology at the University of Chicago in 1952 and his PhD at Florida State University in 1970. He has been a faculty member at the Naval Postgraduate School, Monterey, CA, since 1952 and Chairman of its Department of Meteorology since 1980. His teaching and research interests are in synoptic and polar meteorology.

2. William J. Thompson earned his BS in Physics at California State University Long Beach (Cal) in 1975 and his MS in Meteorology from San Jose State University in 1979. He is currently a research meteorologist with the Department of Meteorology, Naval Postgraduate School, Monterey, CA, specializing in statistical applications utilizing computer methods.

3. Talbot, T. N., and R. J. Renard, 1981: Development of a Prototype North Pacific Ocean Surface Visibility Climatology Stratified by Observation Times. NPS Report 63-81-002, Department of Meteorology, Naval Postgraduate School, Monterey, CA, 85 pp.

4. Naval Weather Service Detachment, Asheville, NC, 1977: U.S. Navy Marine Climatic Atlas of the World, Vol II, North Pacific Ocean, NAVAIR 50-1C-529, Director, Naval Oceanography and Meteorology, 388 pp.

5. Glahn, H. R., and D. A. Lowry, 1972: The Use of Model Output Statistics (MOS) in Objective Weather Forecasting. <u>J. Appl. Meteor.</u>, 11, pp. 1203-1211. 6. Carter, G. H., et al, 1982: Comparative Verification of Guidance and Local Aviation/Public Weather Forecasts -- No. 12 (April 1981-September 1981), TDL Office Note 82-8, National Weather Service, NOAA, 69 pp.

7. University of California, 1979: BMDP-79 Biomedical Computer Programs P-Series, W. J. Dixon, and M. B. Brown, editors, University of California Press, Los Angeles, CA, 880 pp.

8. Yavorsky, P. G., and R. J. Renard, 1980: Experiments Concerning Categorical Forecasts of Open-Ocean Visibility Using Model Output Statistics. NPS Report 63-80-002, Department of Meteorology, Naval Postgraduate School, Monterey, CA, 87 pp.

9. Aldinger, W. T., 1979: Experiments on Estimating Open Ocean Visibilities Using Model Output Statistics. M.S. Thesis (R. J. Renard, Advisor), Department of Meteorology, Naval Postgraduate School, Monterey, CA, 81 pp.

10. Selsor, H. D., 1980: Further Experiments Using a Model Output Statistics Method in Estimating Open Ocean Visibility. M.S. Thesis (R. J. Renard, Advisor), Department of Meteorology, Naval Postgraduate School, Monterey, CA, 121 pp.

11. Department of the Navy, 1972: NATOPS MANUAL CVA/CVS, Office of the Chief of Naval Operations, 130 pp.

12. Koziara, M. C., R. J. Renard and W. J. Thompson, 1983: Estimating Marine Fog Probability Using a Model Output Statistics Scheme, <u>Mon. Wea. Rev.</u>, 111, pp. 2333-2340.

¹⁹⁸⁴ – MEMBERSHIP AP	PLICATION – 1984
ASSOCIATION of AMERICAN WE. PLEASE PRINT OR TY	
DATE	1984 Affiliated Organizations
NAME	National Weather Association
TREET ADDRESS	Blue Hill Observatory Weather Club Morth Jersey Weather Observers
CITYSTATE ZIP	Reading (PA) H.S. Weather Club
ELEPHONE (Include Area Code)	Zephyr Weather Transmission Service
Check appropriate space below	•Watson, Frank and Bruce, Consulting Met.
I hereby apply for membership in the Association of American Weather Observers. I am not a member of any organization listed at right. Enclosed is \$15.00 for 1984 dues and 10 issues of the AWO.	I hereby certify that the information included in this application is accurate and true to the best of my knowledge.
	Applicant's Signature
or I hereby apply for membership in the Association of	Make check payable to Association of American Weather Observers and mail directly to the address below only. Thank You.
American Weather Observers. I am a member of the organization(s) checked at right. Enclosed in \$7.00 for 1984 dues and 10 issues of The AWO.	Association of American Weather Observers P.O. Box 455 Belvidere, Illinois 61008
Please list membership number or date of membership for one of the organiza- tions checked	Allow 4 weeks for processing Add \$5.00 for foreign subscription dues