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ABSTRACT 

The updating of fvt a 5 forecasts of the 
probability of predpitation type (freezing, frozen, or 
liquid) with a recent observation is used as an 
example in using indicator variables to simulate 
stratification of the developmental sample. In this 
example, inclusion of the observation in a primitive 
manner in the updating regression equations does not 
make fuJ1 use of the new information. It is 
proposed that simulated stratification is useful for 
updating guidance forecasts, such as fvI as, for 
projections of a fe w hours, and that the simulation 
may be easier from both developmental and 
operational aspects than actuaJ1y stratifying the 
sample and producing regression relationships for 
each stratum. 

1. INTRODUCTION 

The Local AFOS MOS Program (LAMP) under 
development in the Techniques Development 
Laboratory (TDU will produce an objective 
prediction system that can be run on a minicomputer 
and provide updated MOS guidance Glahn (2) and 
Glahn and Unger (3). Inputs to the system will be 
the most recent station observations and analyses of 
those observations; output from simple, advective 
numerical models initialized with observations, output 
from NMC's primary guidance model, radar data 
when available, and the centrally-produced MOS 
forecasts. 

As a part of the LAMP effort, Bocchieri and 
Forst (4.), (5) performed a series of experiments in 
predicting precipitation type. They used data at 
0800 and at 1300 GMT and made 2-, 5-, 8-, and 
ll-h predictions. The central MOS forecasts which 
correspond to the 0800 (1300) GMT start time can 
be considered to be 7- (12-), 10- (15-), 13- (18-), 
and 16- (21-) h projections, since 0300 GMT 
observations are used as the latest input to them. 
Bocchieri and Forst were surprised to find that the 
centralized MOS 7- and I2-h forecasts were better 
than 2-h regression forecasts produced from 
observations alone when evaluated on independent 
data. Also, the inclusion in regression equations of 
LAMP model output and observations did not 
improve on the MOS forecasts alone as much as 
expected. 

In attempting to see why these results were so 
disappointing, Bocchieri and Forst stratified the 
developmental sample according to whether or not 
precipitation was occurring at initial time-that is, 
whether or not the observation included 
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precipitation. By so doing, and developing separate 
~quations for each of the two subsamples, results 
were better, and in particular, the observations 
alone now produced better 2-h forecasts than the 
MOS 7- and 12-h forecasts. 

This paper follows up on these experiments and 
uses indicator variables to simulate stratification­
thus, "simulated stratification." 

2. PREDICT AND DEFlllITION 

Following Bocchieri and Forst (Ij.), observations 
of preClpltation type were divided into three 
mutually exclusive categories: freezing rain or 
drizzle, snow or ice pellets (called frozen 
precipitation), and rain and mixed types (called 
liquid precipitation). Only cases in which 
precipitation occurred at the forecast valid time 
were included in the developmental sample; 
therefore, the precipitation type forecasts are 
conditional on the event that precipitation occurs. 
In this paper, 2-h predictions of precipitation type 
are made starting from 0800 GMT. 

3. PREDICTOR DEFlllITION 

MOS forecasts are available and are used here 
as the probabilities of the three predictand 
categories. That is, we have a MOS conditional 
probability forecast of each of the three predictand 
categories valid at the same time as the 
predictand-IOOO GMT. The only other variable used 
in this study is the precIpItatIOn observation­
whether or not precipitation was occurring at 0800 
GMT and if it were, the type, defined in the same 
way as the predictand. 

Ij.. MODEL 

a. Multiple regressIon 

A statistical model that has been used over and 
over in meteorology in developing ob jective 
prediction systems is mUltiple linear regression. 
Non-linear relationships between the predictand and 
the predictors can be, to some degree, accounted 
for by transformations of the predictors. The 
predictors can be binary (zero or one variables) 
either because they occur that way (e.g., 
precipitation occurring or not) or they can be 
created from a quasi-continuous variable by breaking 
it into categories and giving a (new) dummy variable 
the value of one (zero) when the value of the 
original variable is (is not) in that category. 

The predictand can also be binary; Miller (6) 
has termed this use of the regression model 



Regression Estimation of Event 
(REEP). In this case, the model 
relative frequency of the binary 
realistic combinations of values of 
variables. 

b. Simulated Stratification 

P robabili ties 
estimates the 

predictand for 
the predictor 

Developers many times believe that they will 
get · better overall results (i.e., a better relationship 
between the predictand, or predictands, and the 
predictors) if they stratify their data sample. That 
is, they believe that the predictand-predictor 
relationships are fundamentally different in subsets 
of the sample-so different that they cannot be 
adequately accounted for by parameterization of the 
subset characteristics. This is a very appealing 
concept, but it doesn't always work out in practice 
because the subdivision of the sample may cause 
overfitting, and while the results with stratification 
will be better on the developmental data, they may 
not be as good on independent test data. However, 
there are situations where stratification, or 
something very close to it, should be a definite 
advantage. The example in this paper is such a 
situation. 

Stratification will produce a set of equations 
for a sing le predictand like the following: 
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where there are g exhaustive and mutually exclusive 
groups or strata, and the same n predictors are in 
each equation. (Actually, not all n predictors need 
be in each equation-some of the a's can be zero.) 
Note that these groups are determined by data 
available at the time the forecast is to be made. 

If the sample had not been stratified, the one 
equaTion with the same n predictors would have 
been simply 
, 

Y = aO + a1X 1 + azXZ + ••• + anxn • (2 ) 

One crude attempt to embellish this equation 
without stratification is to add g-I binary 
predictors, each signifying membership or non-member­
ship in a particular group, i.e., 

(3) 

Eq. (3) may be an improvement over Eq. (2). 
However, it's obv ious that the relationship bet ween 
the predictand and the predictors for the different 
groups differs by only a constant. For example, this 
equation applied to group 1 is 
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since 
Xn+l = 1 and Xn+i ' i = 2, 3, ••• g-l, = O. 

There are may situations where this treatment 
does not allow enough flexibility. One such 
situation exists when we have an estimate of the 
probability of an event and want to improve upon 
that probability by using a recent observation. 
Suppose that the MOS forecasts of the probability 
of precipitation (PoP) for a 12-h period are 
available and the forecaster now has an observation 
taken 7 hours after the MOS forecast was made and 
only 2 hours before the start of the 12-h period. 
One might expect that the conditional relative 
frequency of precipitation (a new, better estimate of 
PoP) as a function of the VIOS PoP would be 
different for those cases when precipitation was and 
was not observed 2 hours before the start of the 
period, and that the two frequencies would not just 
differ by a constant. The (linear) relationships 
might be something like those shown in Fig. I. 
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Fig. 1. Hypothetical relationships between the 
relative frequency of precipitation in a 12-h period 
and the MOS PoP when precipitation was and was 
not observed 2 hours before the start of the period. 

The two 
from data 
precipi tation 
relat(onships 
equation 

/I 
Y '" a + 

relationships in Fig. I could be derived 
stratified on the observation of 

and no preCipitatIOn. Both 
can also be represented by a single 

(5) 

where X 1 is the :\1105 PoP and X2 is a binary 
indicator variable taking the value of zero when 
precipi tation is not observed land the val ue one when 
precIpitatIOn is observed. Then, for the 
observed-precipitation cases, the equation becomes 
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II 
Y (a+c) + (b+d) Xl (6) 

and for the no-precipitation cases the equation 
becomes 

II 
Y = a + bX l' (7) 

Note that these equations can be representead by 
the two lines in Fig. I. The single equation (Eq. 
(5» can be derived by least -squares regression on 
the total sample by using the binary variable X2, 
and the results will be identical to the resulfs 
where a different relationship is derived by least 
squares on the two subsamples. 

In the application 
presented in this paper, 
predictands, so there will 
each specific application of 

to precipitation type 
there are three binary 
be three equations for 
the techniq ue. 

5. APPLICA nON OF THE MODEL 

a. Data Sample 

Data from 30 stations in a five-state area 
around the Washington, D.C., Weather Service 
Forecast Office were available for five winter 
seasons, defined as October through March, for the 
years 1977-78 through 1981-82. For those stations 
for which MOS forecasts were not available, 
forecasts were made by interpolation from stations 
for which forecasts were available (see Bocchieri 
and Forst, (5) for more details.) These MOS 
forecasts were not necessarily those transmitted in 
real time; they were generated from 
quality-controlled data with the probability of 
precipitation type (PopT) system now is use (see 
Bocchieri and Maglaras (7). Also, since MOS 
forecasts are not made for the 1000 GMT valid 
time, linear interpolation in time was made for each 
station from forecasts valid at 0600 and 1200 GMT. 
The observations were taken from TDL's hourly data 
archive. 

Data from all stations within the five-state area 
were combined to produce one set of equations valid 
for all stations in the area. This was necessary 
because the number of cases (at most, one per day 
per station) would be too small to develop a reliable 
set of equations for each station separately or even 
for just a few stations combined. As noted 
prev iously, only those occasions when precipitation 
was occurring at the predictand time were used. 
Also, freezing precipitation is quite rare, as will be 
seen later, and data must be aggregated over 
several months and locations to acquire a sample 
adequate to define a relationship involving that 
variable. 

b. Benchmark No. 1 - Observations not used as 
predictors 

Purely as a benchmark against which to test the 
simulated stratification, we derived the following 
equations: 

I Actually, X
2 

is not limited to zero and one-any 
two (non-equal) values can be used. 
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Pz 0.00 + 0.81 (MOS Pz) - 0.02 (MOS PF) (8) 

(RV = 0.250) 

PF 0.00 - 0.04 (MOS Pz) + 1.02 (MOS PF) (9) 

(RV = 0.813) 

PL 1.00 - 0.77 (MOS Pz) - 1.00 (MOS PF) (0) 

(RV = 0.786) 

where P Z, P F' and P L represent the (conditional) 
probability of freeZing, frozen, and liquid 
precipitation at 1000 GMT, respectively. The 
reductions of var iance (RV) by each equation are 
also shown. 

The MOS P
L 

is not included as a predictor 
because it is redundant with MOS Pz and MOS PF' 
MOS Pz + MOS PF + MOS P

L 
= 1, and if all three 

are included, there is an infinite number of 
solutions, and the cross-product matrix cannot be 
inverted. We can also note that the sum of the 
constants = 1.00, and the sum of the coefficients of 
a particular predictor = 0.00; thus, the sum of the 
forecast probabilities = 1.0. This is a characteristic 
of the regression model when the predictands 
represent exhaustive and mutually exclusive groups 
and the same predictors are in each equation. 
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Fig. 2. Equation 8 when MOS P = 0.0. When 
MOS PF = 0.5, the result is a paralfel line only 0.01 
units J:5elow the one shown. That is, for a given 
MOS ~ z, P 7 . is decreased by 0.01 as MOS P F. goes 
from O.D to \).5. Since MOS P + MOS P will not 
generally exceed 1.00, when M6s P F = 0.1- only the 
range of values 0.0 to 0.5 for MOS Pz are 
appropna te. 

Equations (8) and (9) are represented in Figs. 2 
and 3, respectively. It can be seen from Fig. 3 
that the MOS P F is very reliable as nearly as can 



1.0r-------------------------------------__ ~ 

.8 

__ .6 

LL 
<0.. 

.4 

. 2 

o 
lL..... __ .1.-__ .1.-__ .1.-__ .l...-__ .l...-__ ..L _ _ .. _L.._-'-__ -'-__ -' 

.2 . 4 .0 .8 1.0 

Fig. 3. Equation 9 when MOS P = 0.0. When 
MOS P z = 0.5, the result is a paralTel line only 0.02 
uni ts below the one shown. 

be ascertained from a linear" fit to the data. 
Usually MOS P7 is low, and P F '" MOS P po The 
reliability of tile MOS P Z is not as good on this 
sample as is the reliability of the MOS P , but is 
respectable (Fig. 2). Because the re lative frequency 
of freezing pr ecipitation is low, this result cou ld 
vary considerably from sample to sample (there were 
only 91 cases of freezing precipitation in this 
sample). 

c. Benchmark No. 2 - Observed precipitation 
types as binary predictors 

This benchmark is the model many times used 
when a categorical variable such as precipitation 
type is included in a regression equation. The 
following equations were developed: 

0.01 + 0.48 (MOS Pz) + 0.00 (MOS PF) (11 ) 

+ 0.63 Wz - 0.02 WF - 0.01 WL 

(RV = 0.488) 

0.04 + 0.01 (MOS Pz) + 0.79 (MOS PF) ( 12) 

- 0.18 Wz + 0.23 WF - 0.06 W
L 

(RV = 0.841) 

0.95 - 0.49 (MOS Pz) - 0.79 ( MOS P F) (13 ) 

- 0.45 Wz - 0.21 WF + 0.07 WL 

(RV = 0.821) 

where W , W f' and W take the value of one when 
precipitahon at 0800 tMT is observed as freezing, 
frozen, or liquid, respectively, and zero otherwise. 
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All three variables, WZ' WF' and WL, can be in the 
equatIOn because the no preCIpItatIOn cases complete 
the set. Note that, again, the three constants sum 
to unity and the sum of the coefficients for each of 
the other variables is zero. The reductions of 
variance have improved over those for Eqs. (8), (9), 
and (10) as indeed they must on this developmental 
sample, the one for P _ most substantially. In fact, 
the RV for Pz nearly ~oubled. 
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Fig. 4. Equation II when MOS PF = 0.0. When 
MOS Pp 0.5, the relations are essentially 
unchanged. 
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Pig. 5. Equation 12 when MOS P Z = 0.0. When 
MOS p_ = 0.5, the result is that each line is 
displaceff downward by only about 0.005 units; the 
range of the MOS P F is then O.(J to 0.5. 
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Equations (11) and (12) are represented in Figs. 
4 and 5, respectively. Each of the lines in Fig. 4 
is par allel to the others; the same is true for Fig. 
5. The slopes of the lines in Fig. 4 (Fig. 5) are not 
the same as the slope of the line in Fig. 2 (F ig. 3). 

d. Simulated stratification on precipitation 
event 

This model treats the precipitation cases 
differently than no-precipitation cases. The 
following equations were developed: 

0.00 + 0.85 (MOS Pz ) - 0.01 (MaS PF) 

+ 0.73 Wz - 0.01 WF + 0.00 W
L 

- 0.63 (MaS Pz ) Wp + 0.02 (MaS PF) Wp 

(RV = 0.519) 

(14 ) 

PF - 0.01 - 0.03 (MaS Pz ) + 1.00 (MaS PF) (15) 

- 0.01 Wz + 0.65 WF + 0.01 W
L 

- 0.08 (MaS Pz ) Wp - 0.62 (MaS PF) Wp 

(RV = 0.867) 

1.01 - 0.82 (MaS P
z

) - 0.99 (MaS PF) 

- 0.71 Wz - 0.64 W
F 

- 0.01 W
L 

+ O.ll (MaS Pz ) Wp + 0.60 (MOS PF) Wp 

(RV = 0.848) 

(16 ) 
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Fig. 6. 
MOS PF displaced 
the other 
units; the 

Equation 14 when MOS P F = 0.0. When 
= 0.5, the result is that no-precip line is 
downward by only about 0.005 units and 
lines are displaced upward by about 0.005 
range of the MOS Pz is then 0.0 to 0.5. 
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Fig. 7. Equation 15 when MOS P z = 0.0. When 
~OS P Z = 0.5, the resu It is that tne no-precip line 
IS dIsplaced downward by only about 0.015 units and 
the other lines are displaced downward by about 
0.055 units; the range of the MOS PF is then 0.0 to 
0.5. 

where W P takes the value of one when precipitation 
is observed at 0800 GMT, and zero otherwise. 
(Note that Wp = Wz + WF. + WL") The slopes of 
the no-precipitation lines in figs. 6 and 7, which 
represent Eqs. (14) and (15), respectively, are 
different than the slopes of the other lines in the 
same figure. The inclusion of the two additional 
terms has given much more flexibility in fitting the 
data, and the reductions of variance have increased 
about 3% for each of P z' P f ' and PL' 

e. Simulated stl'atification on precipitation 
and precipitation type 

This model simulates stratification on the 
precipitation event, as observed at 0800 GMT, and 
on precipitation type when precipitation is 
observed. The following equations were developed: 

, 
Pz 

0.00 +'0.85 (MaS P z) - 0.01 (MaS PI') (17) 

+ 0.80 Wz + 0.03 WF - 0.00 WL 

- 0.72 (MOS Pz ) Wz 
- 0.20 (MOS PF) HZ 

- 0.75 (MOS Pz ) WF 
- 0.02 (MaS PF) \.J

F 

- 0.56 (MOS Pz ) W
L 

+ 0.05 (MOS PI') \\ 
(RV = 0.522) 



- 0.01 - 0.03 (MOS PZ) + 1.00 (MOS PF) (18) 

+ 0.01 Wz + 0.79 WF + 0.00 W
L 

- 0.06 (MOS PZ) Wz - 0.71 (MOS PF) \~ .. 
( . 

- 0.57 (MOS P Z) WF - 0.77 (MOS PF) \~F 

+ 0.12 (NOS PZ) W - 0.58 (HOS PF) \~ . L L 

(RV = 0.869) 

1.01 - 0.82 (HOS PZ) - 0.99 (HOS P
F

) (19) 

- 0.81 W -Z 0.82 WF - 0.00 W
L 

+ 0.78 (MOS PZ) Wz + 0.91 (MOS PF) \~Z 

+ 1.32 (MOS PZ) WF + 0.79 (MOS PF) \\ 
+ 0.44 (MOS PZ) WL + 0.53 (HOS PF) \.; 

i. 

(RV = 0.852) 

None of the li nes in figs. 8 and 9, representing Eqs . 
(17) and (18), respectively, is constrained to have 
the same slope as any other line. The reductions of 
variance have increased only slightly over the 
previous model. This is consistent with the fact 
that fig . 8 (fig. 9) is not greatly different from 
fig. 6 (Fig. 7). The added flexibility that this 
stratification on precipitation event and type gives 
over stratification only on the precipitation event is 
that the "f occurs," "z occurs," and "L occurs," 
lines can have slopes that differ from each other. 
Evidently, this added flexibility is not greatly 
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fig . 8. Equation 17 when MOS P = 0.0. When 
MOS P F = 0.5, the result is that fhe no precip, f 
occurs, L occurs, and Z occurs lines are displaced 
by -0.005, -0.015, 0.02, and -0.105 units, 
respectively; the range of the MOS Pz is then 0.0 
to 0.5. 
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Fig. 9. Equation 18 when MOS P = 0.0. When 
MOS Pz = 0.5, the result is that {he no precip, F 
occurs, L occurs, and Z occurs lines ar e displaced 
by -0. 015, - 0.30, 0.045, and -0.045 units, 
respecti vely; the range of the MOS P F is then 0.0 
to 0.5. 

important. Note that the no-precipitation lines in 
Figs. 6 and 8 (7 and 9) are identical, as they must 
be. 

f. Discussion of results 

Table 1 gives the reduction of variance and 
mean- square errors (MSE) for each of the four model 
applications to the same dependent data sample 
discussed above two benchmarks and two 
simulated stratifications. Each model improved upon 
the lower order ones below it, as it f11ust on this 
developmental data . The most notable improvement 
is that for P in benchmark No. 2 over benchmark 
No. I; the infroduction of the observations reduced 
the MSE by .007 or .007/.021 = 33 percent. The 
addition of observations (Benchmark No . 2) reduced 
the MSE by .006 or .006/.040 = 15 percent for the 
frozen category and by .008 or .008/ .048 17 
percent for the liquid category. The simulated 
stratification models further reduced the MSE by 
.006 .006/.034 18 percent for the frozen 
category and .006/.040 = 15 percent for the liquid 
categor y. Prediction of the freezing category was 
not helped much by stratification . 

To see how each of the four systems of 
equations discussed above would perform on 
independent data, they were rederived on each 
combination of 4 years of data and tested on the 
fifth. That is, five sets of equations were. derived 
for each of the four systems, one set derived on 
years I, 2, 3, and 4, another on years 1, 2, 3, and 
5, etc . Forecasts were made for each of these five 
sets for the year omitted in the development. Then 
the 5 years of forecasts were verified, all 5 years 
being "independent" data . All samples were 
matching; the cases in any year were the same for 
development and testing. 

9 
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Predictand Equation Nos. 

Precip. No. of 8-10 11-13 14-16 17-19 
Type Occurrences No. of No. of No. of No.' of 

in Sample Terms RV MSE Terms RV MSE Terms RV MSE Terms RV MSE 

-Freezing 91 2 0.250 .021 5 0.488 .014 7 0.519 .014 11 0.522 .013 
Frozen 953 2 0.813 .040 5 0.841 .034 7 0.867 .028 11 0.869 .028 
Liquid 2108 2 0.786 .048 5 0.821 .040 7 0.848 .034 11 0.852 .033 

Table 1. Statistics for the four ' models discussed. RV is reduction 
of variance and MSE is mean square error . The number of terms 
given for each equation is in addition to the constant. 

P-scores (Brier (8» were calculated. Also, 
categorical forecasts were made from the 
probabilities and were verified on the basis of 
percent correct and Heidke skiJi;z score and on threat 
score of the freezing category. Improvement over 
the MOS forecasts was calculated for each score. 
Categorical forecasts were made from the MOS 
probabilities by using the thresholds used in the 
operational system for the Washington, D.C. area for 
12-h forecasts valid at 1200 GMT-0.28 for the 
freezing category and 0.40 for the frozen category. 
~ategorical forecasts are made by" first comparing 
P Z with the freezing threshold; if P Z is the larger, 
a forecast of freezing precipitation IS made. If Pz 
does not exceed the threshold, P F. is compared to 
the frozen threshold; if PF is the larger, a forecast 
of frozen precipitation is made. Otherwise, the 
forecast is for liquid precipitation. Some initial 
testing indicated that these thresholds should be 
reduced for the regression models used in this study 
to give biases of each category near unity. The 
thresholds chosen, without additional tuning, were 
0.25 and 0.37 for the freezing and frozen 
categories, respectively. 

Table 2 shows the results on the 5 years of 
data. The bias of a category is the number of 

P 
Bias Score Imp. over 

Model Freezing Frozen MaS 

MaS 1.21 0.99 .109 -
Benchmark No. 1 1.10 1.01 .111 -0 .013 
Benchmark No.2 1'.01 1.03 .088 0.189 
Stratification on 1.09 0.99 .078 0.285 

precipitation occurrence 
Stratification on 1.10 1.00 .078 0.285 

precipitation occurrence 
and type 

forecasts of that category divided by the number of 
observations of that category. A bias of 1.0, or 
perhaps slightly greater for the rather rare freezing 
category, is appropriate. It is obvious that 
Benchmark No.1, which is really just a recalibration 
of the MOS probability forecasts, offers no 
improvement over MOS even in terms of the P score 
which does not invol ve a transformation to 
categorical forecasts. 

2Heidke skill score, defined by Panofsky (1958), 
(H-E)/(T -E) where H = the number of correct 

forecasts, T = the total number of forecasts, and E 
= the expected number of correct forecasts based on 
the marginal totals of the contingency table. The 
threat score, defined as early as 1884 by Gilbert 
(9), which he called the "ratio of verification," by 
W. C. Palmer and R. A. Allen in an unpublished 
manuscript in 1949, and by Donaldson, et al. (10) as 
the Critical Success Index, is H/(f+O-H) where H = 
the number of correct forecasts, F the number of 
forecasts of -a (rare) event, and 0 = the number of 
observations of that event. 

Percent Correct Heidke Skill Threat Score 
Score Imp. over Scor:e Imp. Over Score Imp. over 

MOS MaS MaS 

92.2 - 0.832 - 0.314 -
92.1 -0.001 0.830 -0.002 0.299 -0.046 
94.2 0.021 0.871 0.051 0.441 0.406 
94.8 0.028 0 . 881i 0.066 0.508 0.619 

94.6 0.026 0.883 0.061 0.504 0.606 

Table 2. Independent data verification for the four models discussed. 
The scores are defined in the text. 
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Benchmark No.2, the inclusion of the initial 
observation in a primitive way, did provide an 
improvement-considerable in terms of P score (19%), 
modest in terms of percent correct (2%) and skill 
score (5%), and large in terms of threat score of 
the freezing category (41 %). It must be remembered 
that large improvements in percent correct and skill 
score are not possible, because they are already 
high for MOS, and even perfect forecasting would 
increase percent correct and skill score by only 8% 
and 17%, respectively; thus, the inclusion of the 
observation has improved upon MOS by 25 to 30% of 
the possible improvement. 

Stratification on precipitation occurrence 
improved the P score (percent correct) (skill score) 
by an additional 10% (1%) (1%) over MOS. The 
improvement in threat score is notable- from 0.44 to 
0.51, an additional improvement over MOS of 21 %. 

Stratification on precipitation type did not 
provide better results than stratification on 
precipitation occurrence. In fact, the additional 
fitting of the relationships to the developmental 
data by computing more coefficients tended to give 
slightly worse results on test data. This lack of 
improvement is in agreement with the similarity of 
Figs. 6 (7) and 8 (9). 

6. SUMMARY AND CONCLUSIONS 

Many times it is desirable to update a guidance 
forecast based on recent observations. This is a 
concept embodied in LA MP. An example has been 
shown in which the flexibility of stratification, or 
simulated stratification, produced better results than 
the inclusion of the observations in a more primitive 
way. The simulated stratification increased the 
improvement of the threat score of freezing 
precipitation over MOS from 0.41 to 0.62, a very 
worthwhile increase. 

Overfitting can be a problem, and one must be 
careful to not include too many predictors in the 
statistical relationship. Also, objectively screening a 
large number of predictors and choosing the best 
may produce a relationship that is too heavily 
dependent on the specific characteristics of the 
developmental data set. The particular problem 
under investigation should be carefully analyzed, and 
a method used which is appropriate for that 
problem. Stratification on some condition may 
produce useful results, and it may be easier both in 
development and implementation to simulate that 
stratification rather than to actually stratify the 
sample and develop separate relationships . 
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