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ABSTRACT 

Several skill scores that are lIsed to evaluate the quality 
of weather forecasts will be discussed. Each skill score 
can be optimized by following the associated directive 
when making a forecast. If a forecaster wishes to do 
well with respect to a certain skill score, he owes it to 
himself to understand andfollow the appropriate direc
tive. Knowledge of these directives can be applied to 
forecast contests, issuing public weatherforecasts, and 
understanding objective forecast systems. 

1. INTRODUCTION 

Successful forecasting of surface weather elements (cloud 
amount , temperature etc .... ) requires two components. 
One is a comprehensive knowledge of what meteorological 
events could happen in the forecast period. The other is a 
statistical knowledge of how to translate the event probabil
ities into a weather forecast in such a way that the forecaster 
can optimize a skill score. Much attention has been devoted 
to improving the meteorological component of forecasting, 
while relatively little attention has been given to the statistical 
component. This paper will address the latter topic. 

Many different skill scores have been used to evaluate the 
quality of weather forecasts. Associated with each skill score 
is a directive which a forecaster must follow or if he or she 
is to optimize that skill score. A directive is an objective 
method of converting the predicted probability distribution 
for a weather element into a discrete number or category. 
For an example of a directive associated with a given skill 
-score,-consider-t-he situatien a-professional gambler mustface 
when he is selecting a horse to bet on in a race. Suppose 
there are four horses in the race and the gambler assesses 
each horse's probability of winning as follows (assume the 
gambier's probabilities are reliable and the payoff odds are 
not influenced by the gamblers' bet): 

HORSE # 
1 
2 
3 
4 

WIN PROBABILITY 
50% 
20% 
20% 
10% 

PAYOFF ODDS 
50% (1-1) 
20% (4-1) 
10% (9-1) 
20% (4-1) 

Which horse should the gambler bet on? Obviously horse 
# 1 has the highest probability of winning. Betting on the 
horse that has the highest probability of winning is a directive 
that is consistent with maximizing the percent correct score. 
However, horse race betting is not evaluated by the percent 
correct score! The score to maximize in horse race betting is 
money earned. The directive to follow when maximizing 
money earned is to bet on the horse that has the highest win 
probability to payoff odds ratio. Therefore, the gambler should 
bet on horse #3 since a bet on horse #3 is consistent with 
the directive that maximizes money earned. 

Thus, by example, we can see that a forecaster must take 
into account the score by which his forecasts are being eval
uated. In addition, the forecaster must follow the appropriate 
directive if he is to optimize that particular score. In the rest 
of this paper, several skill scores which are frequently used 
to evaluate the quality of weather forecasts will be examined 
and the directives to be followed when trying to optimize 
these skill scores will be discussed. 

2. [FORECAST-OBSERVED] SCORE 

The directive to follow for minimization of [forecast
observed] error points is to forecast the median event of the 
predicted probability distribution (3) . As an example, con
sider a situation which arises frequently in the National Col
legiate Weather Forecast Contest. In this contest, precipi
tation is broken down into the six categories given below. 

CATEGORY 
o 

AMOUNT 

] 

2 
3 
4 
5 

0" 
.0]-.05" 
.06-.24" 
.25-.49" 
.50-.99" 
> .99" 

Imagine a day where the probability of .0]" or more ofrain 
is ony 40%. However, if it does rain, then there is a good 
chance of having greater than .25". This situation happens on 
many days where spotty, deep convection occurs. The fore
casted probability distribution for this scenario might look 
like this: 

CATEGORY 
PROBABILITY 

o 
60% 

1 
5% 

2 
10% 

3 
10% 

4 
10% 

5 
5% 

How much rain should be forecast? Obviously there is a 
good chance of heavy rain. However , the directive to follow 
is to forecast the median event, which is category O. This is 
the only category that can minimize the [forecast-observed] 
error points in the long run . To see this, consider 20 forecasts 
made under meteorological conditions similar to the situation 
above. The relative frequencies of occurrence of each cate
gory are given below: 

CATEGORY 
o 
1 
2 
3 
4 
5 

PROBABILITY 
60% 

5% 
10% 
10% 
10% 
5% 

FREQUENCY 
12/20 

1/20 
2/20 
2/20 
2/20 
1/20 

If a forecaster predicts category 2 in an attempt to hedge 
between heavy precipitation occurrences and no precipita
tion occurrences , then the accumulated error points will be 
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34. One error point is totaled for each category by which a 
forecast is off. If a forecaster predicts the median event, 
category 0, his error points will only total 24. This represents 
a 29% improvement in skill. 

3. (FORECAST-OBSERVED)2 

This is a score which is frequently used to evaluate prob
ability forecasts. The directive to follow for minimization of 
(forecast-observedr error points is to forecast the mean of 
the predicted probability distribution (3). As an example, 
consider a contest where the object is to forecast the proba
bility of .01" or more of rain at a certain station. A binary 
system is used so that if the event does occur then the observed 
value equals one and if the event does not occur then the 
observed value equals zero. The forecast value represents 
the probability the forecaster places on the likelihood of 
occurrence of the event. The probability can be any value 
between zero and one, inclusive. 

Imagine a situation where a storm is moving over the sta
tion for which you are forecasting. Let's say that this storm 
has only a 50% areal coverage of precipitation and that the 
precipitation is randomly distributed around the forecast sta
tion. Then we can say that precipitation will occur at that 
station on average 10 times out of 20 forecasts . Using the 
binary system we should forecast (10(1) + 10(0) )/20 = .50 
because this is the mean of the event distribution. A forecast 
of any value other than .50 will, in the long run , ruin one's 
(forecast-observed)2 score. To see this, consider 20 similar 
cases. If a forecaster predicts 70% in an effort to try to hit 
the rain events, his accumulated error points will be 10(1-
.70)2 + 10(0-.70)2 = 5.8. If the forecaster follows the correct 
directive and forecasts .50 each time then his accumulated 
error points will only be 10(1-.5)2 + IO(O-.W = 5.0. This 
represents a 14% improvement. 

Frequently in a case like this, an inexperienced forecaster 
in a forecast contest will predict something other than 50%. 
Experience at the Pennsylvania State University shows that 
many forecasters absolutely refuse to forecast 50% proba
bilities because they feel a such forecast represents a cop 
out. In addition, they prefer forecasting sharper probabilities 
because they feel sharper forecasts have a higher utility. This 
sharpening of forecasts beyond the objective probability of 
occurrence hurts their skill scores in this type of evaluation 
and, in the long run, decreases utility. 

To further illustrate the importance offollowing the appro
priate directive when making a forecast, it is useful to eval
uate the results of a probability forecast contest (4). Sanders 
reported that "consensus" forecasting outperformed most, 
if not all, of the individual forecasters in the contest. A 
consensus forecast is the mean of all of the individual fore
casts . By taking the mean of all the individual forecasts, 
consensus is following the directive of the (forecast-observed)2 
score! This is a major reason why consensus performs so 
well in probability contests. 

4. PERCENT CORRECT AND THREAT SCORES 

Many times weather forecasts are categorical (yes it will 
rain or no it won't rain for example). This is especially the 
case in many television and radio forecasts of precipitation 
where there is a desire not to " clutter up the forecast with 
probability numbers." The question then arises as to the 
minimum probability that is required before one issues a 
forecast of rain . Should one issue a forecast of rain only when 
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the point probability exceeds 50%, or should the threshold 
be lower, say 30%? A low threshold probability means the 
forecaster will hit more rain events but will also have a high 
false alarm rate. To begin to answer this question consider 
the following contingency table: 

Observed Yes 
No 

Forecast 
Yes No 
A B 
C D 

Box A represents the number of times a forecaster pre
dicted rain and rain was observed (# of hits). Box B repre
sents the number of times a forecaster predicted no rain and 
rain was observed . Box C represents the number of times a 
forecaster predicted rain and no rain fell (# offalse alarms). 
Box D represents the number of times a forecaster predicted 
no rain and no rain fell. The percent correct score is (A + D)/ 
(A + B + C + D) and the threat score is A/(A + B + C). 

To show the dependence of these scores on the threshold 
probability one chooses, data from a precipitation probability 
experiment (5) will be used. In this experiment, probability 
forecasts given by National Weather Service forecasters were 
converted into yes/no rain forecasts depending on whether 
or not that probability exceeded various thresholds. The 
values for each contingency table element are shown below 
for varying threshold probabilities. 

THRESHOLD A B C D 
60% 144 628 68 3540 
50% 233 539 163 3445 
40% . 346 426 317 3291 
30% 515 257 685 2923 
20% 660 112 1387 2221 

The main inference one can make from this table is that as 
the threshold probability lowers , the number of hits (element 
A) increases and the number <?ffalse alarms (element C) also 
increases. The table below shows the effect of the threshold 
probability on the percent correct and threat scores. 

THRESHOLD 
60% 
50% 
40% 
30% 
20% 

% CORRECT 
84.1 
84.0 
83 .0 
78.5 
65.8 

THREAT 
.171 
.249 
.318 
.353 
.306 

From this table we see that as the threshold lowers (as the 
forecasts get wetter) the threat score first increases towards 
the maximum at the 30% threshold , and then decreases. The 
percent correct score decreases dramatically as the threshold 
is decreased from 50% to 20%. From these results , two con
clusions can be made: 
I) In order to maximize the % correct score , forecast rain 
only when the probability is 50% or more. For this data the 
optimum threshold was actually 60%. Hughes and Sangs
ter (5) attribute this to the fact that the 50% probability fore
casts were unreliable since the observed relative frequency 
of rain (when a 50% probability was forecasted) was some
thing other than 50%. Normally one can expect the optimum 
threshold to be 50%. 
2) In order to maximize the threat score, the threshold should 
be lower. For this data one should forecast rain only when 
the probability was 30% or more. 

From this data, we see that regardless of which of the two 
scores the forecaster is trying to maximize, rain should be 



forecasted when the probability is 50% or more, and no rain 
should be forecasted when the probability is lower than 30%. 
The real problem arises when the forecasted probability is 
between 30% and 50%. Should a forecaster predict rain in 
this situation? The answer depends on which score the public 
is using to evaluate their forecasters. If all the public desires 
from the forecaster is that he be right as often as possible, 
then no rain should be forecast in this situation. However, if 
tfie public wants to be warned about possible rain events 
(i.e., if the public considers rain events to be more important 
than non-rain events), then the forecaster should predict rain 
in this instance. If the public does not know which score the 
forecaster is trying to optimize, then misinterpretation of the 
forecast is likely. 

5. DISCUSSION 

Just as it is important to be able to optimize a skill score 
once probability estimates have been made, it is equally 
important to be able to correctly interpret an objective model 
forecast when making the initial probability estimates. Objec
tive forecast models such as Model Output Statistics (MOS) (6) 
are designed to do well on a particular skill score. It is up to 
the forecaster to understand which skill score the model is 
trying to optimize when making his initial probability esti
mates. If a forecast contest is being evaluated by a skill score 
that is different from the skill score an objective model is 
trying to optimize, then the forecaster must take this into 
account. Neglecting this information will lead to a poor per
formance in the contest. For example, in the National Col
legiate Weather Forecast Contest (precipitation categories 
are given in section two), if the MOS categorical precipitation 
forecast model is predicting .25-.49" of precipitation, many 
forecasters will say "look at this, MOS is forecasting cate
gory 3 precipitation!" While this is true in a literal sense, it 
shows that many forecasters are not taking into account the 
fact that MOS categorical precipitation forecasts are designed 
to optimize the threat score (7). Thus, MOS will have a wet 
bias with respect to the [forecast-observed] skill score that 
is used to evaluate forecasts in the National Collegiate Weather 
Forecast Contest. So when one converts the MOS forecast 
from the value which optimizes the threat score to a value 
which optimizes the threat score to a value which optimizes 
the [forecast-observed] score, the forecaster will readily 
understand that MOS is "really" forecasting category 2 pre
cipitation (with respect to the way the National Collegiate 
Weather Forecast Contest gets evaluated). 

6. Conclusions 

In summary, successful forecasting of surface weather ele
ments begins with the use of meteorological information to 
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generate reliable probability forecasts. Statistical models such 
as MOS are known to generate reliable probability forecasts 
for many weather elements. After probability estimates have 
been made, the forecaster should use them to select a forecast 
that is consistent with the directives of the skill score by 
which the forecast will be evaluated . The directives of four 
skill scores were given above and it was shown that forecast 
skill can diminish quite rapidly with departure from the 
appropriate directive. 
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