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ABSTRACT 

Further work is described on statistical forecasting exper­
iments to evaluate the capability of predictors derived from 
observational data (analysis) fields at 950, 500, and 200 mb 
to forecast tropical storm formation. In this study, we first 
describe the redefinition of the projections to make them 
more meaningful for forecasting purposes and to make fore­
casts using the statistical algorithms more consistent among 
the projections. Using the redefined projections , the statis­
tical predictors were re-screened using Rao' s technique, and 
a single set of predictors was selected for all projections. 
Results in terms of accepted statistical methods are pre­
sented for independent data based on the refined tropical 
storm formation prediction technique in categorical form, 
and comparisons are made with an earlier form of the fore­
cast technique. A graphical representation of the probabili­
ties of tropical stormformation (and location of the storm at 
forecast time of formation) is described. An evaluation is 
made against operational "formation alerts" made by the 
Joint Typhoon Warning Center for the 1980 tropical storm 
season. All results confirm the skill of the statistical tropical 
storm forecasting technique in both categorical and proba­
bilistic form. 

1. INTRODUCTION 

Since the latter part of World War II, prediction of tropical 
cyclones has been of concern to U.S. military operations in 
the western North Pacific and South China Sea. Such tropical 
phenomena also pose a threat to civilian maritime shipping 
operating in these regions. Following World War II, the Joint 
Typhoon Warning Center (JTWC), which is a joint U.S. 
Navy-U .S. Air Force facility, was established to provide 
needed tracking and prediction services. It is generally agreed 
that the main problem that continues to face JTWC fore­
casters is the prediction of tropical storm movement. How­
ever, another vexing problem facing forecasters at this facil­
ity has been the accurate, reliable prediction of tropical storm 
formation. Reasonable success has been achieved in produc­
ing physical models for the prediction of tropical cyclone 
motion but success using physical models to predict tropical 
storm formation has been elusive. The motivation for this 
study is to provide objective guidance for use by JTWC in 
predicting tropical storm formation. This paper discusses a 
statistical technique to do so. 

Perrone and Lowe (3) reported on a successful statistical 
technique for predicting tropical storm formation. In that 
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study we addressed the forecast problem of predicting the 
development of a cloud cluster into a tropical storm within 
0-24 hr, within 24-48 hr, and within 48-72 hr. We used 
predictors originally suggested by Gray and collaborators/ 
associates (e.g., (4), (5), (6), and (7); see also (8).) The statis­
tical methodology we used was discriminant analysis. The 
best-known use of this methodology in weather forecasting 
research is by Miller (9). 

Section 2 of this paper briefly describes the data, meth­
odology, and results of our previous work. Section 3 describes 
the critical re-examination and re-formulation of our previous 
work into a form better suited for an operational forecast 
technique, while Section 4 describes the operational forecast 
technique. Section 5 presents results of an evaluation of the 
operational technique. Section 6 presents our conclusion. 
Appendix A describes the statistical techniques we used, 
Appendix B describes a regression-derived technique to fore­
cast tropical storm location 24 hr hence, and Appendix C 
defines the statistical scores used in this study. 

2. A SUMMARY OF PREVIOUS WORK 

The data used in our previous work were derived from 
three sources: the National Oceanic and Atmospheric 
Administration (NOAA) tropical Mosaic visible satellite images 
for 1974 through 1977; the 12-hourly standard meteorological 
data fields produced and archived by Fleet Numerical Ocean­
ography Center (FNOC) in Monterey, California; and the 
post-season ("Best Track") Storm Analyses prepared by 
JTWC. Area coverage for the work was from the Equator to 
300 N latitude and from 1800 longitude westward to the Asian 
mainland (area includes South China and Philippine Seas). 

Our objective is to develop a forecast technique capable 
of predicting tropical storm formation up to 72 hr in advance 
by using the statistical methodology of discriminant analysis 
operating on predictors formed from data contained in FNOC 
observational data (analysis) fields. We defined tropical storm 
formation as the event in which a cloud cluster grows to a 
tropical storm. A tropical storm is defined as a closed tropical 
circulation with maximum sustained surface wind that equals 
or exceeds 17 m/s (34 kt). To build a database suitable for 
applying the statistical methodolocy and to identify geo­
graphical locations at which to extract predictor data from 
the FNOC fields, we used satellite imagery . The visible sat­
ellite images together with the JTWC best-track analyses 
were used to identify cloud clusters that later developed into 
tropical storms. These are called GO cases. The same satel-
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lite images from which the GO cases were selected were also 
used to identify cases of cloud clusters that did not subse­
quently develop into tropical storms, called NO GO cases. 

The GO cases were selected first, as far back as 72 hr from 
the time of tropical storm formation , if the JTWC analyses 
allowed us to trace a cloud cluster's location 72 hr back in 
time. If not, the case was traced as far back as the analysis 
supported (i.e., 48 or 24 hr, as appropriate). For each GO 
case selected (for 24, 48, and 72 hr prior to tropical storm 
formation), the satellite mosaic corresponding to the GO case 
for a particular time period (24, 48, and 72 hr) was scrutinized 
for other cloud clusters that met a minimum 10 latitude diam­
eter selection criterion. These clusters were picked as NO 
GO cases for that time period. 

We desired broad geographical coverage for the NO GO 
cases, because our goal is to develop an objective prediction 
scheme usable over a broad region of the western North 
Pacific Ocean. If a tropical storm rarely developed in some 
portion of the region, we wanted the statistical prediction 
scheme to be able to account for this. Accordingly, we needed 
a geographically representative sample of NO GO clusters, 
so that the differences in the means of the tropical storm 
predictors for each group (GO and NO GO) would be large 
enough to allow discriminant analysis to properly distinguish 
GO cases from NO GOs. 

For each of the GO and NO GO cases, the FNOC analysis 
fields were accessed for the time and location of the cases 
and a variety of basic environmental quantities were extracted. 
These quantities were extracted by using the time and posi­
tion of the cluster locations, as determined from the satellite 
images and post-season best-track analyses. Bessel interpo­
lation was employed to determine the values of the quantities 
associated with the cloud cluster positions lying between the 
FNOC operational grid points. Among the basic quantities 
extracted from the FNOC analysis fields were the surface 
pressure , the north-south and east-west component of the 
winds at 9S0 and 200 mb, sea surface temperature , and mois­
ture at 9S0, 700, and SOO mb. 

From this basic set of quantities , the candidate predictors 
for discriminant analysis (Table I) were formed by applying 
finite-difference formulae used in numerical modeling. All 
computations were made on a 2.So latitude grid, except where 
noted for the low level (9S0 mb) and upper level (200 mb) 
vorticities. The Coriolls parameter was computed and added 
to the list of candidate predictors. The moist layer stability 
parameter is the difference between the equivalent potential 
temperature (8e) at 9S0 mb and SOO mb. For more details on 
the case selection procedure and the candidate predictors , 
see (3) . 

Two further comments on our methodology may facilitate 
understanding of it: First it should be emphasized that no 
predictor data was derived from the satellite imagery; all 
predictors are derived from the FNOC analysis fields. Sat­
ellite imagery was used only to help identify GO and NO GO 
cases, and to select the latitude and longitude of the cases, 
providing the locations on the analysis fields where predictor 
information would be accessed. 

Second , the tropical depression (TD) stage of tropical 
cyclone developed was not explicitly addressed in the devel­
opment of our technique. We reasoned that that it is more 
important to address forecasting the onset of the tropical 
storm stage (i.e., closed circulation with maximum wind speed 
equal to or greater than 17 mls (34 kt)) so we chose not to 
complicate our forecast problem or dilute the power of the 
statistical methodology by trying to separately account for 
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cloud cluster to tropical depression development andlor trop­
ical depression to tropical storm development. Nonetheless, 
even though our technique does not explicitly address trop­
ical depression to tropical storm development, we decided 
to test its ability to forecast such situations. Successful results 
for the 1980 tropical storm season are reported in Section S 
with particular emphasis on the capability to predict the tran­
sition from tropical depression stage to tropical storm stage. 
In view of our case selection procedure described above, our 
dependent GO case sample may include some tropical 
depressions (if they developed into tropical storms within 24, 
48, or 72 hr from the time they appeared on a given satellite 
image). Similarly, our dependent NO GO case sample may 
include some tropical depressions (if they did not develop 
into tropical storms within 24, 48, or 72 hr from the time they 
appeared on a given satellite image) . 

In (3) we applied the BMDP7M stepwise discriminant anal­
ysis program (10) to a dependent sample for each of three 
forecast projections: T24, defined as 0-24 hr; T 4M, 24-48 hr; Tn, 

48-72 hr. BMDP7M uses forward stepwise screening to select 
among candidate predictors (See Appendix A, Section A.I 
for details), and selected five predictors for the 0-24 projec­
tion, four predictors for the 24-48 hr projection, and one for 
the 48-72 hr projection. The selected variables are indicated 
in Table I, while Table 2 shows scores for the forecasts 
produced. For more details consult (3). 

Table 1. List of candidate and selected predictors. 
Column 1 lists initial discriminant function predictors 

selected for T = 24. 
Column 2 lists initial discriminant function predictors 

selected for T = 48. 
Column 3 lists initial discriminant function predictors 

selected for T = 72. 
Column 4 lists final discriminant function predictors 

selected for T' = 24, 48, and 72. All T S expressed in hr. 
All predictors measured on a 2S latitude gride except 
predictors C and I, which use a 5.00 grid . Low level = 950 
mb. Upper level = 200 mb. See text for description of 
difference in mean i ng of T and T'. 

Candidate Predictors 2 3 4 

A Low-level vorticity (2S) x x x x 
B Low-level divergence x x 
C Low-level vorticity (5.00

) x x 
D Advection of low-level vorticity 
E Product of A and B x x 
F Vertical wind shear 
G Upper-level vorticity (2S) 
H Upper-level divergence 
I Upper-level vorticity (5.0°) 
J Advection of upper-level x 

vorticity 
K Product of G and H 
L Sea-surface temperature 
M Relative humidity (700 mb) 
N Equivalent potential 

temperature (8. ) (700 mb) 
o Relative humidity (500 mb) 
P Equivalent potential x x 

temperature (8. ) (500 mb) 
Q Moist-layer stability x 
COR Coriolis parameter x 
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Table 2. Scores from original experimental results (after 
Perrone and Lowe (3), using predictors indicated In Table 
1, columns 1-3, on independent data. Scores are defined 
in Appendix C. 

Score 
Projection (hr) (T) 

0-24 24-48 48-72 

Percent Correct 
Power of Detection (GO) 
False Alarm Rate (GO) 
Threat Score 
Brier Score 

92.9 
0.857 
0.038 
0.706 
0.090 

86.4 
0.875 
0.031 
0.538 
0.240 

85.4 
0.750 
0.065 
0.500 
0.280 

3. NEW RESULTS, FOLLOWING A CRITICAL RE­
EXAMINATION OF PREVIOUS WORK 

Although pleased with our previous results, summarized 
in Section 2, we felt that further analysis of the data might 
yield an improved prediction process. Somewhat troubling 
was the fact that different predictors were chosen for each 
projection (See the initial predictor lists in columns 1-3 of 
Table I). Although the predictors selected are optimum for 
each projection, we faced the undesirable prospect that the 
resulting predictions might not be consistent with projection 
to projection. 

Consequently, we redefined the forecast projections this 
way: 

T' 24 designates tropical storm formation within 24 hr. 

T' 4H designates formation within 48 hr. 
(i.e. anytime between = 0 to = 48) 

T' 72 designates formation within 72 hr. 

The redefinition of the projections accomplishes three 
objectives: (i) it is logical and amenable to interpretation 
operationally; (ii) it enlarges, in effect, the data samples for 
the 48- and 72-hr forecasts; (iii) it promotes consistency of 
forecasts from projection-to-projection. Under the new def­
inition, T'24 is unchanged from T24 . The new T'4H data sample 
is a combination of the old T24 and T4H data samples and the 
new T'72 sample combines the old T24, T4H, and T72 samples. 

Two assumptions that underlie discriminant analysis are: 

a. both sub-populations (GO and NO GO cases) possess 
multivariate normal distributions for the predictors. 

b. both sub-populations possess identical covariance 
matrices. 

Even if the multivariate normality assumption (a) is not 
perfectly satisfied, linear discriminant analysis remains quite 
robust (See (II ». An inordinately large departure from nor­
mality, though, will degrade results . Linear discriminant 
analysis is, however, very sensitive to the satisfaction of the 
equality of covariance assumption (b); if it is not well satis­
fied, results will definitely be degraded. 

Having as a goal the rescreening of the candidate predictors 
to perform a better discriminant analysis, we scrutinized our 
database carefully in light of assumptions (a) and (b). A 
number of the candidate predictors listed in Table 1 were 
discarded because they either were highly non-normally dis­
tributed (related to assumption .(a» or did not possess equal 
variances for both GO and NO GO sub-populations (assump­
tion (b)), or both. 
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For rescreening the candidate predictors, we did not use 
the BMDP7M program. Of the candidate predictors that 
remained after scrutiny to determine satisfaction of assump­
tions (a) and (b), those that did not exhibit significant differ­
ences between means for the GO and NO GO samples were 
removed from further consideration. Doing so acts as a gross 
filter in the process of selecting a more parisomonious (effi­
cient) set of predictors, by eliminating candidate predictors 
that do not contribute significantly to the predictive power 
of the technique. In the next step, which acts as a finer filter 
in the selection process, the candidate predictors that remained 
were screened using a procedure developed by Rao (12). See 
Appendix A, Section A2, for a description of Rao's statistic 
and its use in the screening process . The coefficients and 
constants for the resulting discriminant function are given in 
Table 3. The predictors are also listed in column 4 of Table 
I for comparison with the predictors selected in our previous 
work. 

In our previous work (3) we used equal a priori probabili­
ties with discriminant analysis to produce categorical fore­
casts. Equal a priori probabilities imply that there is a 50% 
chance that a given tropical cloud cluster will grow into a 
tropical storm, which is a somewhat unrealistic assumption. 
Because consistent, reliable unconditional probabilities of 
tropical storm formation derived from climatology were not 
available for the western North Pacific region, we estimated 
such probabilities for each month by questioning a number 
of scientists with either experience in forecasting tropical 
storms or general tropical meteorology expertise. Estimating 
a priori probabilities through expert consensus has long been 
advocated by Bayesian statisticians such as Lindley (13) as 
a valid way to obtain such probabilities when historical fre­
quency of occurrence information (i.e. climatology) is either 
unavailable or unreliable. The consensus is shown in Table 
4 for 24 hr. To obtain a priori probabilities for 48 (72) hr, we 
doubled (tripled) the probabilities for 24 hr. In the absence 
of any other reasonable basis, we assumed that the proba­
bility of a tropical storm formation can be reasonably be 
expected to increase linearly with the time period involved, 
particularly for the small probability values we used. 

Table 3. Coefficient and constants for the discriminant 
function produced through rescreening by Rao's method 
using the redefined projections. The same predictors were 
selected for each of the redefined projections. These 
coefficients and constants are for results described in 
Section 3 of the text. The grid size used to measure each 
predictor appears in parentheses after the predictor's 
name. 

Rescreened Redefined Projections (hr) (T') 

Predictors 0-24 0-48 0-72 
Low-level vorticity (2.50

) -0.35 -0.31 -0.27 
LOW-level divergence -0.17 -0.13 -0.10 

(2.50
) 

Low-level vorticity (5.00
) -0.08 -0.08 -0.08 

Product of low level -0.17 -0.11 -0.06 
vorticity and 
divergence (2.50

) 

Equivalent potential -0.26 -0.19 -0.12 
temperature (500 mb) 
(5.00

) 

Constant 95.0 70.0 43.0 
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We experimented by varying somewhat the a priori prob­
ability values about those given in Table 4. We observed as 
a consequence of these informal sensitivity studies that the 
use of the a priori probabilities acts as a "brake" on the 
forecast process by tending to reduce false alarm forecasts. 
The false alarm rates reported in Table 5 (less than 11%) 
seem acceptable for operational forecasting, thereby justi­
fying our choice and use of the a priori probabilities. 

To make categorical forecasts, we used the Probability of 
Error Decision Criterion (See Appendix A, Section A3 for 
details of the criterion), and produced results on independent 
data, displayed in Table 5. The same five predictors were 
used for each projection, as listed in Table 3 and in column 
4 of Table I. 

Comparison of the revised with the original results (Table 
5 with Table 2) is not easy because of the change in definition 
of two of the three projections. Only the 24-hr projection is 
defined the same way in both tables. For the 24-hr projection, 
all scores except the Brier Score are less favorable in Table 
5 than in Table 2. Speaking of the Brier Score, although direct 
comparison between the two tables of the other two projec­
tions is not possible, one is struck nonetheless by the low 
(favorable) Brier Scores throughout Table 5. This perception 
motivated the probabilistic refinement which follows in Sec­
tion 4. 

Table 4. Estimated a priori probabilities, by month, for 
tropical storm formation within 24 hr, for the western North 
Pacific Ocean and South China Sea. 

Region 
Month 

Western North Pacific Ocean South China Sea 

January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

0.0005 
0.0005 
0.001 
0.005 
0.01 
0.05 
0.10 
0.10 
0.07 
0.05 
0.01 
0.005 

0.0005 
0.0005 
0.001 
0.005 
0.01 
0.05 
0.03 
0.03 
0.05 
0.05 
0.01 
0.001 

Table 5. Scores for new results described in Section 3 of 
the text, using predictors indicated in Table 1, column 4, 
on independent data. Scores are defined in Appendix C. 
The discriminant function was produced through 
rescreening by Rao's method using the redefined 
projections. The same predictors were selected for each of 
the redefined projections. 

Score 

Percent Correct 
Power of Detection (GO) 
False Alarm Rate (GO) 
Threat Score 
Brier Score 

Redefined Projection 
(hours) (T') 

0-24 0-48 0-72 

84.0 
0.692 
0.108 
0.529 
0.090 

82.2 
0.667 
0.104 
0.467 
0.120 

87.2 
0.750 
0.067 
0.545 
0.080 
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4. OPERATIONAL FORECAST TECHNIQUE USING 
PROBABILITY FORECASTS 

Although the categorical (GO and NO GO) results pro­
duced using discriminant analysis as described in Sections 2 
and 3 showed considerable skill, discussions with many Navy 
operational forecasters with tropical storm forecasting expe­
rience indicated that they had some preference for probability 
rather than categorical forecasts. Production of probability 
forecasts from statistical techniques also finds vigorous sup­
port from commentators such as Murphy (14), who argue 

24 HR 

"8 HR 

I 
,~ I 

72 HR 

Fig. 1. Sample of the graphical output produced by the computer 
program described in Section 4 of the text. The charts were pro­
duced from FNOC data for the western North Pacific Ocean on 29 
July 1980 at 0000 GMT. The labeled panels contain contoured prob­
abilities of tropical storm formation, one for each forecast period as 
redefined in Section 3 of the text: T'24 (within 24 hours); T'48 (within 
48 hours); and T'n (within 72 hours). 
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that probability forecast guidance communicates more infor­
mation to the operational forecaster than categorical fore­
casts do. 

The low Brier Scores achieved by our reworked discrimi­
nant analysis technique (See Table 5) indicate considerable 
probability forecasting skill. We wished to capitalize on this 
strength in developing an operational technique. To make 
probability forecasts using our technique, one uses the a 
posteriori probabilities of tropical storm development and 
non-development. These a posteriori probability forecasts 
are produced using Bayes' theorem with the discriminant 
function. Bayes' formulation for these probabilities is described 
in Appendix A, Section A4. 

A computer program has been designed and test-imple­
mented to produce a chart of contours of equal probability 
of tropical storm formation in the western North Pacific and 
South China Sea. The program calculates the predictor quan­
tities listed in Table 4, column 4 for each of the standard 
FNOC grid points (spaced 2S of latitude apart) in the west­
ern North Pacific Ocean and South China Sea. The program 
then operates on these quantities using the Rao discriminant 
function described in Appendix A, Section A2. Probabilities 
of tropical storm formation are calculated at each grid point 
using the method of Bayes' theorem for calculating a poster­
iori probabilities described in Appendix A, Section A4. Stan­
dard contouring techniques are then used to produce charts 
of contoured probabilities. The computer program is designed 
to run twice daily (0000 UTC and 1200 UTC) on data available 
at FNOC. 
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Figure I is a sample of the graphical output of the program 
and is for 29 July 1980 at 0000 UTC. Three of the panels 
contain contoured probabilities of tropical storm formation, 
one for each redefined forecast period T' 24 (within 24 hr); T' 48 

(within 48 hr); and T'n (within 72 hr). These three panels 
address the probability of the occurrence of the event of 
tropical storm formation, but do not directly indicate the 
tropical storm's location at the time it is forecast to become 
a tropical storm. To remedy this, we propose a fourth panel, 
whose concept was developed after the computer program 
to produce the other three panels was written. This proposed 
fourth panel (not included in Fig. I) would contain an indi­
cation of the probability of a tropical storm's location within 
24 hr, given that a storm had been forecast to form . The 
proposed fourth panel would consist of a series of contoured, 
concentric ellipses, with each ellipse representing (at a spec­
ified probability level) the most likely location for tropical 
storm formation within 24 hr. See Appendix B for a discus­
sion of a statistical regression experiment (which used data 
from our study's database) from which these probability 
ellipses could be derived. If some other short-range move­
ment prediction technique is shown to have more skill than 
the technique described in Appendix B, it could be incor­
porated instead into the operational computer program. 

In any event, the proposed fourth panel would be produced 
only if the maximum probability calculated for the first panel 
(of tropical storm formation within 24 hr) exceeds a defined 
threshold. Our experience with the data suggests that a 
threshold of 0.80 is appropriate. We observe that cases of 

Table 6. Partial evaluation results for our objective forecast technique compared with JTWC formation alerts; shown in this 
table are results for tropical depressions (TDs). The full evaluation was performed on independent data for 9 months of the 
tropical storm season for 1980 (see text). Lead time expressed in hours. Formation of Tropical Storm "DINAH" was a 
complete miss for both JTWC and our objective forecast technique. FALSE ALARMs are incorrect forecasts of the 
development of a tropical storm by our objective technique. 

Month 

MAY 

JUNE 
JULY 

AUGUST 

SEPTEMBER 

OCTOBER 

NOVEMBER 

TD# 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Tropical 
Storm 

JTWC 
Formation Alert 

Lead Time 

Objective Objective Technique 
Technique Probability at 
Lead Time Lead Time 

"DOM" 
"ELLEN" 
"FORREST" 
"GLORIA" 
"HERBERT" 
"IDA" 
"JAKE" 

"KIM" 
"LEX" 
"MARGE" 

"NORRIS" 

12 
12 
24 
24 
24 
24 
36 

24 
20 
12 

24 

"ORCHID" 24 
"RUTH" 27 
"PERCY" 6 
"SPERRY" 6 
"THELMA" 24 
"VERNON" 24 
"WYNNE" 24 
"ALEX" 30 
"BETIY" 24 
"CARY" 12 
, , DINAH' , -----------------------------------

72 .95 
36 .99 
72 .92 
72 .90 
48 .85 
72 .90 
72 .95 

FALS E ALAR M --------------------------------------------------
72 .97 
36 .90 
36 .95 

FA LS E A LA R M --------------------------------------------------
72 .99 

FALS E ALAR M --------------------------------------------------
72 .99 
72 .95 
72 .95 
48 .90 
36 .95 
60 .95 
36 .95 
72 .95 
36 .90 
72 .95 

CO M P LET E MISS ---------------------------------------------
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non-development into tropical storms have probabilities well 
below 0.50, while cases which did develop into tropical storms 
possessed probabilities generally well above 0.80, and usu­
ally above 0.90. 

5. A TEST OF THE OPERATIONAL FORECAST 
TECHNIQUE ON INDEPENDENT DATA 

The operational probability forecast technique described 
in Section 4 was evaluated for every day of 9 months of the 
1980 Typhoon season (December 1980, January 1981, and 
February 1981 were excluded). Although our technique was 
not explicitly developed to forecast the transition from the 
tropical depression to tropical storm stages, we felt that a 
demonstration of the technique emphasizing tropical depres­
sions would show whatever skill our technique might have 
to forecast this stage transition. A tropical depression (TD) 
is a tropical system with a degree of circulation organization 
greater than that of a cloud cluster, but whose observed 
sustained maximum wind speed has not yet reached the trop­
ical storm threshold (17 m/s (34 kt». Our technique was run 
on FNOe fields (at 0000 and 1200 UTe) for each day of the 
period described above. 

The results of applying our forecasting technique in 1980 
for TDs is presented in Table 6. Indicated are the operational 
lead time achieved by JTWe in issuing tropical storm for­
mation alerts, our technique's lead time using a threshold 
probability offormation of 0.80, and the probability indicated 
by our technique at the lead time. A " formation alert" is 
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issued when the JTWe forecaster determines, though his 
judgment and use of JTWe rules and empirical forecasting 
techniques, that tropical storm formation is reasonably likely 
within the limited area defined in the alert. 

Our technique had lead times ranging from 36 to 72 hr, 
compared with JTWe operational " formation alert" lead 
times ranging from 6 to 36 hr. Of the 25 tropical depressions 
that occurred during the 9-month period covered by the study, 
21 were correctly forecast by our technique to develop into 
tropical storms. Three false alarms were TDs incorrectly 
forecast by our technique to develop into tropical storms. In 
fact, these false alarms were the only ones our forecast tech­
nique produced for the 9-months of the 1980 tropical storm 
season data used in this study. The formation of tropical 
storm "DINAH" was apparently completely misseed because 
of the sparseness of surface data in the mid-Pacific where the 
storm formed . This inadequacy of surface data was probably 
reflected in the low-level predictors used by our forecast 
technique . From a Navy operational viewpoint, the impact 
of this type of complete miss is minimal, as most naval activ­
ities are carried out farther westward , where surface data are 
more plentiful and our forecast technique performs well. 

6. CONCLUSION 

All evaluations we have performed indicate that the statis­
tical tropical storm formation forecast techniques developed 
in this and our previous work demonstrate considerable skill. 
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APPENDIX A 

STATISTICAL TECHNIQUES AND PROCEDURES USED 

A1. BMDP7M STEP-WISE DISCRIMINANT ANALYSIS 
Our previous work (3) applied the BMDP7M step-wide 

discriminant analysis program (10) to dependent samples for 
each of three forecast projections: T24, T48, and Tn (i.e., for 0-
24 hr, 24-48 hr, and from 48-72 hr, respectively). 

The BMDP7M program proceeds in a step-wide manner. 
At each step, the predictor with the highest F value (i.e., the 
one that adds most to the separation, statistically, of occur­
rence from non-occurrence of tropical storm formation) is 
entered into the analysis. Stepping continues until a minimum 
F value-to-enter is reached. For tropical storm formation 
algorithm development, a minimum value of 4.0 was used, 
the default value of the BMDP7M program. 

When the screening procedure is complete, the BMDP7M 
program produces discriminant functions composed of the 
predictors that have been selected as the best discriminators. 
For tropical storm formation algorithm development, two 
classification functions were produced, one for each of the 
two categories (GO (tropical storm formation) and NO GO 
(non-formation», for each of the three forecast projections 
described above. 

The forward step-wise screening of the candidate predic­
tors resulted in selecting five predictors for the T24 projection, 
four predictors for the T48 projection, and one for the Tn 

projection. The selected predictors are indicated in Table I 
of the main text, in columns 1,2, and 3. 

The discriminant functions produced for each forecast pro­
jection have this form: 

CLx = c..'I' + Cx.IZI + ... + Cx.nZn (AI. I) 
CLy = Cy•q, + Cy.IZI + ... + Cy.nZn (AI.2) 

CLx and CLy are discriminant functions for GO and NO GO 
samples respectively; Cx.q, and Cy.'I' are constant terms for the 
two samples, and Cx.1 and Cy.1 are the coefficients for the ith 
discriminator predictor Zj for the two samples. 

For categorical forecasting (i.e., classification as GO or 
NO GO) the discriminant functions are used this way: if CLx 
is less than CLy, the prediction of tropical storm formation 
(GO) is made; otherwise prediction is for non-formation (NO 
GO). In other words, a low value of CLx relative to CLy is 
associated with a high tendency for tropical storm formation. 

For probability forecasting (i.e., to determine the proba­
bility of GO and NO GO), Bayes' theorem is used to produce 
estimates of the probabilities, when the a priori (i .e., uncon­
ditional) probabilities of GO and NO GO are unknown or are 
assumed to be equal: 

P (GO/Z) = 1/( I + exp (CLy - CLx» 
P (NO GO/Z) = I - P (GO/Z) 

(A 1.3) 

(AlA) 

The "/Z" in these two equations means "given that a prob­
ability forecast has been made using discriminant analysis." 

A2. DISCRIMINANT ANALYSIS USING RAO'S 
METHOD 

Rao's method (12) screens candidate predictors this way: 
first the Mahalanobis distance ' is calculated using the avail-

IMahalanobis' distance is a measure of the separation between two 
statistical populations. It is the "distance" between the means normal­
ized by the common variance of the populations. For further discussion 
of Mahalanobis' distance see (II). 

able candidate predictors. Then, one predictor is removed 
from consideration and the Mahalanobis distance is recom­
puted. The statistic F (defined below) is computed and used 
to test whether or not the difference D2k - D2

k _ 1 is significant. 
If the difference is significant, the predictor is retained; if 
not, it is discarded. The procedure is repeated until only 
significant predictors remain; these resulting predictors are 
those reported in Column 4 of Table I. 

Rao's statistic has this form: 

(A2.1) F= (nx+ nv - k-l)C(D2
k - D\_I)(k- k,)-'( 1 + CD2

k _ I)-I, 

where: 

D\ and D 2
k _ 1 are the Mahalanobis distances computed using 

k predictors and k - I predictors respectively, 

k = number of predictors under consideration, 
nx> ny are the samples sizes of the GO and NO GO samples 
respectively, 

C = nxnJ((nx + nv)(nx + nv - 2), and 
k - k, = J for our application. 

Once the predictors are screened, a single discriminant 
function is derived from then, having the form: 

DsCZ) = Co + C1Z1 + ... + CkZk, 

where Co (a constant) = '12 (Y-X)S - I 

and Cj = S-lij (J'j-X); 

X, Yare the mean vectors for the GO and NO GO samples, 
respectively, 

Zj is the value of the ith candidate predictor, 

S-lij is the ijth element of the inverse of the covariance matrix 
S,and 

k = the number of predictors chosen. 

Note that Ds(Z), as a consequence of being a linear com­
bination of predictors having normal distributions, is also 
normally distributed. Our pre-screening of candidate predic­
tors, limiting consideration only to those possessing normal 

. distributions, assured this result. 

A3. CATEGORICAL FORECASTING-GO OR NO 
GO-USING THE PROBABILITY OF ERROR 
DECISION CRITERION 

The Probability of Error Decision Criterion2 establishes a 
threshold for categorical forecasting so as to minimize the 
total probability of error. Categorical forecasts are made in 
the following manner. Forecast tropical storm formation (GO) 
if the discriminant function Ds(Z) is less then: 

i12 1(X + Y)I + 21n (P(GO)/P(NO GO)(Zv - Zx)-I. 

Conversely, forecast non-formation (NO GO) is DS(Z) is more 
than the quantity above. P(GO) and P(NO GO) are the I a 
priori (i.e. unconditional) probabilities of tropical storm for­
mation and non-formation, respectively. 

'Full development and discussion of this decision rule may be found 
in (15) 
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The results from applying the forecast rule described above 
on independent data are presented in Table 5. 

A4. CALCULATION OF A POSTERIORI 
PROBABILITIES 

A posteriori probabilities are those determined as a con­
sequence of the forecast process (i .e., "given" that a forecast 
has been made). The formula for the a posteriori probability 
of tropical storm formation (GO), derivable from an appli­
cation of Bayes' theorem, is: 

P(GOIDJZ)) = I/(l + C exp (DJZ))) (A4.1), 

where C = P(GO)/P(NO GO), the ratio of the a priori (i .e. , 
unconditional) probability of tropical storm non-formation 
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(NO GO) to the a priori probability of tropical storm forma­
tion (GO). The notation "/DiZ))" in A4.1 means "given that 
a forecast has been made using discriminant analysis." 

If the a priori probabilities of GO and NO GO are unknown 
or assumed to be equal, then in A4.1, C = I, and A4.1 reduces 
to A1.3. It can be shown that Ds(Z) in A4.1 is an alternative 
formation of (CLy - CLx) in AI.3. 

For the results reported in Table 5, the a priori GO prob­
abilities were used that had been estimated for month and 
location (presented in Table 4). These estimated probabilities 
were used rather than assuming that the a priori probabilities 
of GO and NO GO are equal, as was true for the results 
presented in Table 2. 

APPENDIX B 

FORECASTING TROPICAL STORM LOCATION 24 HR HENCE 

A proposed fourth probability panel for the graphical pre­
sentation of results from our forecast technique would con­
sist of a series of contoured, concentric probability ellipses. 
These ellipses would be used to provide prediction guidance 
for the location of a tropical storm within 24 hr, given that a 
tropical storm has been forecast to form within the next 24 
hr. 
. Using the BMDP2R forward step-wise regression program 
(16), we developed separate equations for latitude and lon­
gitude to predict the position , 24 hr later, of a tropical storm 
that developed from a cloud cluster. We used the following 
information in our database: as independent variables, the 
latitude (longitude) of the GO cluster at the time the forecast 
is made, together with certain meteorological predictors whose 
values were measured at the GO cluster's initial position. 
The dependent variable is the latitude (longitude) of the trop­
ical storm when it develops 24 hr later. Table B I shows the 
predictors used in the regression, as well as their coefficients 
and intercepts. 

The standard of error of prediction for the latitude is 1.70° 
with a residual variance of 2.86 degrees. The standard error 
in predicting the longitude is 3.05° with a residual variance 
of9.31°. For a discussion of the concept of standard error of 
prediction , see (17). We preformed statistical significance 
tests on the means of our prediction oflatitude and longitude, 
and found no significant difference between actual and pre­
dicted values. We conclude, therefore, that there is no basis 
in the prediction. 

Next we performed the Lillifors test for normality (18) 
separately on our distributions of predicted latitudes and 
longitudes. The test results indicate that both the latitude and 
longitude are normally distributed. Confirmation of the nor­
mal distribution of the predicted latitudes (longitudes) is nec­
essary for the validity of the next step: the construction of 
concentric ellipses of constant probability for selected prob­
ability levels . We used this formula : 

(B. I) 

where A is the observed longitude, 
Ap is the predicted longitude, 
<\> is the observed latitude, 
<\>r is the predicted latitude, and 
k is a function of the probability level desired. 

The resultant concentric probability ellipses can be used 
as guidance by a forecaster in specifying the region in his 
"formation alert" where a tropical storm is highly likely to 
form within the 24 hr following issuance of the alert. 

Table 81. Summary of values associated with the 
prediction, by regression, of the latitude and longitude of a 
tropical storm's location when it forms. Included are 
independent variable names and coefficient(s), intercept 
values, and R square values. All meteorological predictors 
are measured on a 2.50 grid, except low-level vorticity, 
which is measured on a 5.00 grid. Upper level = 200 mb. 
Low level = 950 mb. 

Regression Prediction 
Latitude Longitude 

Independent Coefficient Independent Coefficient 
variable variables 
Observed 1.070403 Observed 1.03198 
latitude longitude 

Low-level -.20728 
vorticity 

Upper-level - .09733 
divergence 

Sea-level - .61743 
pressure 

Intercept 0.46655 Intercept 618.57691 
R-square 0.898 R-square 0.947 
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APPENDIX C 

SCORE DEFINITIONS 

The power of detection = AIC, the false alarm rate = 1 
- AlB, the threat score = A/(B + C - A) , where A is the 
number of correct forecasts of an event, B is the total number 
offorecasts, and C is the number of observations of the event. 

N Z 

Brier score = I1N L L (P ij - oy, 
i= I j = I 

where Pij is the probability estimate from category j for case 
i (for this study, Pil = P(GOIDs(Z» , and Pi~ = I - Pil); 
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