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1. Introduction 

One of the main tasks operational meteorologists face in 
day to day forecasting is determining the sign of the vertical 
velocity. In situations where the dynamic forcing for vertical 
motion is weak, forecasters often attempt to determine this 
parameter through a kinematic approach (Holton 1979). This 
method requires knowledge of the horizontal velocity diver­
gence. 

Until the advent of advanced datasets, forecasters have not 
had the tools necessary to quickly obtain an accurate assess­
ment of the horizontal velocity divergence. The diagnosis of 
diffluence has , on the other hand, been quite easy. Conse­
quently, diffluence and horizontal velocity divergence are often 
considered to be the same thing, with areas of diffluent flow 
assumed to be divergent as well. Diffluence does NOT automat­
ically imply divergence and making that assumption can lead to 
incorrect estimates of the implied vertical motion. 

2. Discussion 

Although the concepts of divergence and diffluence have 
existed for a long time (e.g., Petterssen 1956), confusion still 
remains in the application of these ideas in the operational 
setting. To see how horizontal velocity divergence and dif­
fluence differ, it is helpful to use the natural coordinate sys­
tem. In two dimensions, this is an orthogonal coordinate 
system with the s-axis parallel to the flow at each point (posi­
tive downstream) and the n-axis perpendicular to it with posi­
tive values to the right of the flow looking downstream. Fol­
lowing Saucier (1955), with V representing the magnitude of 
the velocity vector (wind speed) and a the wind direction in 
radians (degrees x 1T/180), the horizontal velocity divergence 
can be written as 

. av aa 
Divergence = - + V-a 

as n 
(1) 

The first term in (I) is called the stretching (or speed diver­
gence) term and describes how the wind speed is changing 
along the s-axis (streamline) . If the wind speed is increasing 
downstream then this term is positive (also known as speed 
divergence). The second term in (I) is the spreading (or the 
directional divergence) term and describes how the wind 
direction is changing along the n-axis (perpendicular to the 
flow) . If the flow spreads out downstream (diffluence), then 
this term is positive (V is always greater than zero). 

From (1) it is obvious that diffluence is only a part of the 
total horizontal divergence. In evaluating horizontal velocity 
divergence, one must consider not only the pattern of the 
streamlines but also the structure of the wind speed along 
the streamlines. What makes the evaluation difficult is that 
oftentimes the two terms in (1) oppose each other, that is, in 
areas where the streamlines spread out downstream the wind 
speed decreases. Consequently, an accurate quantitative (and 
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often even a qualitative) assessment of the divergence using 
streamline,s and isotachs is next to impossible. 

Instead of using streamlines and isotachs , many forecasters 
use geopotential height charts to infer horizontal velocity 
divergence . To do this, they look for areas where the geopo­
tential height lines spread out looking downstream. These 
areas are labeled "diffluent flow ," and it is incorrectly 
assumed that horizontal divergence is automatically occur­
ring there. In these cases little attention is given to the stretch­
ing term in (1). 

What makes this method suspect is that when forecasters 
use geopotential heights to deduce the wind vectors they are 
often assuming that the flow is geostrophic. Thus , where 
geopotential height contours spread out (diffluent geostrophic 
flow) there must be, by definition, geostrophic speed conver­
gence. Hence the stretching term in (I) is negative and the 
spreading term is positive. Which has the greater magnitude? 
It's anybody's guess. Furthermore, assuming a constant 
Coriolis parameter, the geostrophic wind is nondivergent! 
So any use of the geostrophic wind to determine horizontal 
velocity divergence is not theoretically sound. 

A glaring example showing how diffluent flow is not neces­
sarily divergent is depicted in Figure I. Shown are the NOM 
geopotential heights and divergence at 500 mb created using 
gridded model output. Note how the geopotential height lines 
("geostrophic streamlines") spread out over the area extend­
ing from eastern Nebraska to western Tennessee. This is the 
region of diffluent flow. The dashed lines in this same area 
are isopleths of the horizontal divergence of the actual wind. 
Note that the values are negative which means that horizontal 
convergence is occurring here! 
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Fig. 1. NGM geopotential height (thick lines, gpm) and isopleths of divergence (thin lines, *10- 5 

sec - 1). Dashed thin lines denote negative divergence or convergence. 
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