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Abstract 

A common approach to short-range precipitation forecast­
ing involves the extrapolation of radar reflectivity fields that 
ha ve been analyzed in digital form on a map grid. In an 
attempt to. refi.ne this basic technique, a large number of 
extrapolatlveforecasts were prepared and statistically corre­
lated with actual radar observations at the valid time. The 
relationships determined in this manner can then be applied 
if.l interp~·etfng other extrapolative forecasts. This extrapola­
tIve-statIstIcal method implicitly accounts for echo decay 
and IIncertainties in the extrapolative process, and is analo­
gOlls to the Model Output Statistics approach often used 
to prodllce forecasts of sensible weather from numerical 
weather prediction model output. 

This study was based on observations obtained with Radar 
Data Processor 1/ at Oklahoma City, Oklahoma, during the 
period /985-1990. A large sample of 30- and 60-minute 
extrapolativeforecasts of zero-tilt reflectivity, vertically-inte­
grated liqllid, and /8-dBZ echo tops was prepared. The 
extrapolation velocity was estimated from digital pattern 
matching within a sequence of reflectivity images collected 
before the forecast initial time, orfrom the 700-mb environ­
mental wind vector. Linear regression was used to relate 
the areas of zero-tilt reflectivity 2: 40 dBZ to the extrapolative 
forecasts of reflectivity variables. 

The probability forecasts produced by the regression equa­
tions 11'1'/:1' then verified 011 independent data. Categorical 
(yeslno)./orecastsfor40-dBZ reflectivity, valid at 30 minutes 
wlt!7in ~I /2-/\117 square region, were producedfrom the proba­
btllt)' forecasts. A threshold of 35% yielded a probability of 
detect~OJ: of O.~ with a false alarm ratio of 0.4 and bias of 
1.2. SU17t1ar s/oll scores were obtained for 60-minute fore­
casts \'{{Iid within 20-km square regions. 

1. Introduction 

Convective rainstorms significantly affect many human 
activities. At the same time, such phenomena represent a 
particularly difficult forecasting problem because they 
develop and decay rapidly, and generally affect a small area 
for only a short period of time. 

A number of numerical models of convective systems have 
been developed and demonstrated. These models simulate 
the development of individual thunderstorms or entire meso­
soscale convective systems. In an operational weather fore­
casting environment, however, neither the necessary obser­
vations nor computing power is usually available to run these 
models. 

Yet it is possible to make use of radar observations to 
forecast future rainfall by extrapolation of the digitized 
reflectivity field. The movement of mature convective sys­
tems (the ones most likely to cause flash flooding and wide­
spread severe weather outbreaks) is sufficiently conservative 

12 

that linear- extrapolation forecasts of their position are useful 
to at least 30 minutes, and possibly somewhat longer. The 
velocity of the system can be estimated from a sequence of 
earlier radar observations and its future position forecasted 
by assuming that the velocity will remain constant during 
the forecast projection period. The extrapolative forecast 
procedure is illustrated schematically in Fig. I. The storm 
motion vector (SMV) between times L30 and to can be esti­
mated objectively by calculating the displacement that yields 
the best pattern match between the two images. The fore­
casted precipitation area at time t+ 30 (the hatched region in 
the figure) is made by displacing the to image at this velocity. 

This type of extrapolative forecast system has been imple­
mented operationally by forecasting groups in a number of 
countries (Austin and Bellon 1974; Conway 1987; Takemura 
et al. 1987). At present, the Weather Surveillance Radar 1988 
Doppler (WSR-88D) information processing system includes 
an echo centroid extrapolation product, though the product 
represents only forecasted positions for individual convec­
tive cells. 

Saffle and Elvander (1981), hereafter referred to as SE81 
demonstrated that it should be possible to make substantiv~ 
improvements in extrapolative forecasts by treating future 
zero-tilt reflectivity (ZTR) within the storm system as a statis-
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Fig. 1. Schematic diagram of extrapolative forecast process for 
radar fields. Cross-hatched region at right ("to extrap") represents 
area over which precipitation is forecasted at t+ 30. 
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tically-derived function of current reflectivity, echo top 
height (TOPS), and vertically-integrated liquid (VIL) esti­
mates. In their approach, the basic extrapolative forecast 
steps (as shown in Fig. 1) were repeated on many sequences 
of archived radar data. The TOPS and VIL fields were extrap­
olated at the same velocity as the ZTR field. For each test 
forecast, grid-point values from the initial-time radar field, 
the field forecasted for valid time by extrapolation, and the 
valid-time radar field, were stored. An equation relating ini­
tial-time and extrapolated ZTR, TOPS, and VIL values to 
the valid-time observed ZTR was then determined by linear 
screening regression. This technique is conceptually similar 
to the Model Output Statistics approach (Glahn and Lowrey 
1972), in which unbiased forecasts of sensible weather ele­
ments are derived from the output of a numerical weather 
prediction model. In operations, this equation would be used 
to forecast the future ZTR values within the area to which 
the reflectivity field is extrapolated. SE81 found that the 
optimum predictor combination for future ZTR featured both 
ZTR and echo tops; it appeared that the deepest echoes 
were the ones most likely to feature high reflectivity after 
an interval of 30 minutes or more. 

This study involves a repeat of SE81 ' s original experiments 
in forecasting instantaneous ZTR values with a much larger 
sample of volumetric reflectivity observations than was then 
available. We have also incorporated a number of refine­
ments to the methodology for estimating the storm motion 
vector, and expressed the reflectivity forecast in probabilistic 
terms. We will show that the extrapolative method yields 
useful skill to projections as great as 60 minutes. 

2. Data Used in this Study 

The radar data used in this study were collected at the 
WSR-57 site in Oklahoma City, Oklahoma (OKC), which 
has been equipped with Radar Data Processor II (RADAP­
II) minicomputer equipment since the early 1980's. The 
RADAP II controls the radar during volumetric scanning 
observations, calculates and displays a variety of reflectivity­
based radar products, and automatically archives data. In 
the experiments of this study, we have used observations 
from the period 1985-1989. The cases are almost exclusively 
convective events, which are the ones most likely to cause 
flash flooding. All data were manually edited to remove 
anomalous propagation echoes. 

For both trial time projections, individual sequences of 
radar images from 85 or more separate calendar days were 
used. Each image sequence consisted of five volumetric 
scans. The first four images were taken at 30, 20, 10, and 0 
minutes before the initial time; these were used to estimate 
the motion vector. The fifth scan was taken at valid time, 
either 30 or 60 minutes after initial time. Our data sample 
features 816 sequences for the 30-minute forecasting experi­
ment and 658 sequences for the 60-minute experiment. The 
digitized ZTR, VIL, and TOPS fields were objectively inter­
polated to a 4 x 4 km cartesian grid centered on the radar 
site. Data within 20 km of the radar were excluded to avoid 
the effects of ground clutter; data beyond 180 km were 
excluded because earth curvature effects can adversely 
affect the VIL and TOPS calculations at such range . 

3. Derivation of Storm Motion Vectors 

A binary-correlation pattern-matching procedure was used 
to estimate storm motion vectors in this study. This method, 
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described by SE81 and by Ciccione and Pircher (1984) , is 
economical , and works well when the entire echo region 
does not change size or shape appreciably. Here, the "0-1 " 
binary criterion was taken to be the 40-dBZ level in the ZTR 
field. 

Initially, the SMV was estimated as the mean of the vectors 
calculated between three pairs of images, that is, from L,o 
to L~o, from L~o to L 10' and from L 10 to to. The subscripts 
refer to time, in minutes, relative to the initial time to. By 
employing image pairs only 10 minutes apart, we hoped to 
minimize the effects of changes in the echo patterns. How­
ever, it was found that this approach tended to underestimate 
the echo speed , due to discretization error when the echo 
movemenf was small relative to the grid spacing. 

Better results were obtained when the SMV was estimated 
from the to and L30 images , or the two possible pairings at 
20-minute separation. After further tests, it was decided to 
select the extrapolation SMV according to which of these 
three pairs of images had the highest binary correlation coef­
ficient (that is, the pair having the closest match in terms of 
shape and size of the reflectivity region). Since the 30-minute 
movement vector should logically be least affected by dis­
cretization error, it was used in preference to the 20-minute 
vectors , unless one of the 20-minute image pairs had a binary 
correlation coefficient exceeding the 30-minute coefficient 
by at least 0.05. 

In cases where none of the pairings had a binary correlation 
as high as 0.50, a motion vector from an earlier pair of images, 
as far back as 120 minutes from to, was used. Finally , if no 
earlier pattern-match estimate of the SMV was available, 
the 700-hPa wind vector from the National Weather Service 
(NWS)/National Meteorological Center's (NMC) Nested 
Grid Model (NGM) forecast or analysis was used . Other 
tests, carried out in conjunction with this study , had shown 
that this wind vector was generally the best fully independent 
estimate of the echo motion that could be obtained from the 
NGM upper-air winds. 

4. Validation of the Reflectivity Extrapolation 
Technique 

To verify that the extrapolation method outlined above 
yields significantly skillful forecasts of reflectivity, we pre­
pared analyses in which both extrapolative and persistence 
forecasts were verified with observed data. The extrapolative 
forecasts were made by advancing an initial-time (to) field 
for 30- and 60-minute projections. The persistence forecast 
was simply the to reflectivity field itself. We expected that 
the set of extrapolative forecasts would be the one more 
highly correlated to verifying observations. 

The experimental forecasts utilized data from over 280 
sequences of radar images. All points of the 4 x 4 km analysis 
grid within approximately 130 km of the radar were incorpo­
rated. The forecasts and verifying observations were reduced 
to categorical values according to whether the reflectivity 
reached, or did not reach, a threshold of 18 dBZ. For the 30-
minute forecast experiment, over 3,818,000 individual grid­
point cases were tested, while over 2,882,000 cases were 
available for the 6O-minute experiment. 

The terms for possible outcomes are shown in Fig . 2. In 
the figure, X indicates the number of grid points at which 
both forecasted and observed reflectivity exceeded 18 dBZ 
("hits"), Y denotes the number of grid points at which the 
observed, but not the forecasted, reflectivity exceeded 18 
dBZ ("misses"), and Z indicates cases in which forecasted 
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Fig.2. Possible outcomes of categorical (yes/no) forecasts for radar 
reflectivity. 

but not observed reflectivity exceeded the threshold (" false 
alarms " ). The final category, W, denotes cases in which 
neither forecasted nor observed reflectivity reached 18 d8Z. 

The outcome values are often used in calculating forecast 
scores as outlined by Donaldson et al. (1975). The probability 
of detection (POD), is defined by X/(X + V) , the false alarm 
ratio by Z/(X + Z), and the critical success index (CSI) by 
X/(X+ Y +Z). 

The results of the 30-minute forecasting experiment, for 
both extrapolation and persistence forecasts, are shown in 
Fig. 3. Note that the number of cases in each outcome cate­
gory is shown in thousands. The categorical forecast scores 
(Fig. 4) indicate that the extrapolative forecasts do possess 
more skill than the persistence forecasts. The POD is higher 
(0.70 compared to 0.66), while the FAR is lower (0.25 com­
pared to 0.29). The CSI, which represents overall skill, was 
higher for the extrapol ation forecasts (0.57 compared to 
0.52). Within this sample, 18% of the verifying observations 
exceeded the 18 d8Z reflectivity threshold. 

The differences in forecast scores were slightly larger for 
the 60-minute forecasts , as might be expected given the 
greater time projection. As shown in Fig. 5, the POD values 
for extrapolative and persistence forecasts were 0.55 and 
0.50, respectively, the FAR values were 0.40 and 0.43, and 
the CSi values 0.42 and 0.36. Within this sample , only 12% 
of the verifying observations exceeded the reflectivity 
threshold. This percentage was smaller than in the 30-minute 
experiment ; while all sequences were initiated at times when 
there was some convective activity within the verification 
region of the umbrella , a greater portion of the echoes exited 
the region during the longer projection inte.rval. 

Finally , the 30-minute forecasting experiment was 
repeated, but the reflectivity threshold was increased to 40 
d8Z, a considerably higher value which typically constitutes 
a small fraction of the echo region, even in convective events. 
The extrapolation forecasts were clearly superior to persis­
tence (Fig. 6), though the CS I values for the extrapolation and 
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Fig.3. Number of grid blocks within each forecasUverification cate­
gory, for 3D-minute radar reflectivity forecasts. Numbers in parenthe­
ses are for persistence forecasts (non-extrapolated fields); numbers 
represent thousands of cases. 

SCORE 

EXTRAPOLATION PERSISTENCE 

30-MINUTE FeST, 18+ dBZ 
0.8 

POD FAR CSI 

Fig. 4. Scores for 3D-minute extrapolation and persistence forecasts 
of reflectivity of 18 dBZ or greater. 

persistence forecasts were only 0.21 and 0.13, considerably 
lower than for forecasts for the 18-d8Z level. This is probably 
a consequence of the fact that the 40-d8Z region generally 
occupies a small fraction of the radar umbrella. Only 3.1% 
of the verifying values reached this reflectivity threshold. 
Also, the 40-dBZ region often represents the core region of 
convective updrafts, which develop and decay rapidly. The 
18-d8Z area usually envelopes the strong updrafts, and 
changes size and shape more slowly. 
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Fig. 5. As in Fig. 4, except for 60-minute forecasts. 

SCORE 
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0.8 
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Fig.6. As in Fig. 4, except for forecasts of 40-dBZ or greater reflecti­
vity. 

5. Creation of the Statistical Predictor-Predictand 
Dataset 

For each sequence of radar images, the extrapolation pro­
cess outlined above was carried out, and the extrapolation 
forecast image was compared to the observed image at valid 
time. Grid-point values of ZTR, VIL, and TOPS, from both 
the extrapolated and initial time images , were stored in a 
separate dataset as candidate predictors. It is logical to 
expect that the initial-time data would contribute substantial 
information to forecasts of 20 minutes or less, which will be 
considered later in this study. The valid time ZTR values at 
the same grid points were stored as predictand data. Local 
averages and maxima of all values were also stored as new 
candidate predictors and alternate predictands. 
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This extrapolative-statistical method can be expected to 
yield information on reflectivity changes only within existing 
echo areas . Since the method cannot forecast changes in 
echo region shape or the formation of new echoes, data at 
other points in the valid time image do not contribute truly 
useful information to the regression procedure . Therefore, 
only ZTR, VIL, and TOPS values from grid points where 
the extrapolated ZTR was nonzero (the hatched area in Fig. 
I) were stored and entered in the regression procedure. The 
values were drawn from every fifth grid point (20-km nominal 
spacing) in the north-south and east-west directions . 

6. Valid~Time Reflectivity as a Function of 
Extrapolated Radar Parameters 

The expected 30-minute projection valid-time ZTR (V AL­
ZTR) as a function of extrapolated ZTR (EXZTR) and TOPS 
(EXTOPS) is shown in Fig. 7. In this analysis , all extrapo­
lated fields and V ALZTR were averaged over 12 x 12 km 
square regions. Data from over 26,000 individual cases were 
included. 
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Fig. 7. Expected values of ZTR as a function of 3D-minute extrapo­
lated values of (a) ZTR and (b) TOPS. All values are averaged over 
12 x 12 km regions_ Number of cases within each predictor category 
is indicated_ 
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It is apparent that the extrapolated echo characteristics 
are significantly correlated to the V ALZTR; the nonlinear 
correlation ratio (Panofsky and Brier 1968) indicated that 
EXZTR (Fig. 7a) explained 22% of the variance in V ALZTR. 
Within this sample, the mean of EXZTR was 35 dBZ , while 
the mean of V ALZTR was 30 dBZ, with a standard deviation 
of 14 dBZ. It is understandable that V ALZTR is less than 
EXZTR because of echo decay and errors in forecasting the 
system movement. The EXTOPS predictor (Fig. 7b) 
explained 23% of the variance. Though these are rather small 
reductions of variance, it should be noted that the verifying 
region is also small, only 144 km". 

The value of the extrapolation procedure is apparent when 
reductions in variance with respect to V ALZTR are com­
pared for various predictors (Fig. 8). The extrapolation pre­
dictors all explained about twice the percentage of the vari­
ance that the initial-time predictors did. Note that this com­
parison is somewhat different from the one described in 
section 4; here, only grid points at which the extrapolation 
forecast indicated a nonzero reflectivity were considered. 

Consistent results were obtained when this analysis was 
repeated for 6O-minute extrapolation forecasts. In this data 
sample , the mean and standard deviation of VALZTR were 
26.1 and 15.4, respectively. The corresponding reductions 
in variance (Fig. 9) were lower than for the 30-minute fore­
casts, as would be expected. Again, the extrapolation pre­
dictors explained substantially more of the variance in V AL­
ZTR than initial-time values did. 

Forward screening linear regression was used to derive 
forecast equations relating V ALZTR to the various predict­
ors at 30-and 60-minute projections . An alternate predictand, 
ZTR averaged over a 20 x 20 km square region, was also 
tested . Generally, for both predictands , only two or three 
predictors contributed substantially to the reduction of vari­
ance , and these were usually EXTOPS and EXZTR. 

Verification of these forecasts on independent radar data 
suggested that forecasts of the ZTR field itself might not be 
sufficiently accurate for operational use. The mean forecast 

r------------------ --- --- --- -- - --- ---- -

INITIAL-TIME ECHO TOPS 

EXTRAPOLATED ECHO TOP 

EXTRAPOLATED ZTR 

EXTRAPOLATED VIL 

o 5 10 15 20 25 30 35 40 45 50 

PERCENTAGE REDUCTION OF VARIANCE IN ZTR 

Fig_ 8. Reduction in variance with respect to 12 x 12 km average 
ZTR, by various initial-time and extrapolated volumetric radar pre­
dictors_ Forecasts are for 30 minutes. 
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EXTRAPOLATED ECHO TOPS 
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PERCENTAGE REDUCTION OF VARIANCE IN ZTR 

Fig_ 9_ As in Fig_ 8, except for 50-minute forecasts. 

error was nearly 10 dBZ, which corresponds to a rainrate 
error of factor four to five. This result suggested that the 
extrapolative forecast system might be more useful if it pro­
duced probabilistic , rather than continuous, forecasts. 

7. Probabilistic Forecasts for Reflectivity in Excess 
of a 40-DBZ Threshold 

The probabilistic approach involves defining the predict­
and as unity if V ALZTR is greater than or equal to 40 dBZ, 
and zero otherwise. The screening regression process then 
yields a regression estimate of event probability (REEP) of 
reaching or exceeding the 40-dBZ threshold. Such forecasts 
should be useful in field operations, since they would provide 
the forecaster with the potential of rainfall in excess of a 
significant rate, rather than a simple expected value with no 
explicit statement of the level of certainty. The 40-dBZ level 
corresponds to a rainrate of approximately 0.5 inches per 
hour and is often used to delineate "convective" from "stra­
tiform" rainfall. 

The results of this approach are illustrated in Fig. I 0, which 
shows the probability that the ZTR will exceed 40 dBZ within 
a 12 x 12 km square region, given various values of ZTR 
and VIL at initial time. The ZTR predictor is EXZTRMX, 
defined as the local maximum ZTR value within a 12 x 
12 km region centered on the grid point of interest, and 
extrapolated forward by 30 minutes. The VIL predictor, 
EXVILMX, was similarly defined as the extrapolation of the 
local maximum in VIL. 

As shown in Fig. lOa, if the initial local maximum ZTR 
was 22.5 dBZ, there was only a 5% probability that the 
same subregion within the moving echo area would have 
a reflectivity in excess of 40 dBZ, 30 minutes later. The 
probability increased to over 50% if the initial echo was 
46-48 dBZ , and to over 70% if the initial echo was 53 dBZ 
or greater. Similar results are shown in Fig. lOb; it is apparent 
that current VIL is also an effective predictor of future 
reflectivity . If the initial VIL exceeded 10 kg m-Z, there was 
at least a 60% probability that the echo region would feature 
ZTR in excess of 40 dBZ after 30 minutes. In this sample, 
32% of the cases had valid-time ZTR above the threshold, 
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Fig. 10. Percentage of 12 x 12 km regions in which 40-dBZ echoes 
occur, as a function of 30-minute extrapolated forecasts of (a) ZTR 
and (b) VIL. The predictor values are local maxima within the 12 x 
12 km region . 

and EXVILMX explained 25% of the predictand variance. 
The EXZTRMX predictor explained 24% of the variance. 

The reduction of variance with respect to this binary pre­
dictand, for both extrapolated and initial-time predictors, 
appears in Fig. II. As was the case for a continuous ZTR 
predictand, the extrapolated predictors were much more hig­
hly correlated with later high-reflectivity occurrence than 
were the initial-time fields. The extrapolated echo top pre­
dictor was no longer the best in terms of reduction of vari­
ance. It is possible that, while extrapolated TOPS was the 
predictor most highly correlated to future ZTR over the entire 
range of ZTR values, the extrapolated ZTR and VIL fields 
were more highly correlated to future ZTR within the range 
near the 40-dBZ value, which is of importance in defining 
the binary predictand. 

The relationship between extrapolated VIL and V ALZTR 
at the 6O-minute projection is shown in Fig. 12. Here , the 
probability of 40 DBZ echo occurrence , within a 12 x 12 km 
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Fig. 11. Reduction of variance with respect to binary reflectivity 
predictand (ZTR2!40 dBZ), by various initial-time and extrapolated 
predictors. Predictors and predictand are all based on local maxima 
within a 12 x 12 km region. 
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Fig. 12. As in Fig. 10b, except for 60-minute forecasts. 

region at the 60-minute projection, is shown as a function 
of EXVILMX. At this greater time projection, EXVILMX 
explains less variance in the predictand, as could be 
expected ; the histogram indicates that this predictor cannot 
delineate probability values less than 12% or greater than 
50%. The overall relative frequency of 40-dBZ echoes in this 
sample was only 25%; this is due to the tendency of echoes 
to move out of the verification region during the forecast 
period . The EXVILMX predictor explained 9% of the pre­
dictand variance . 

8. Validation of 30- and 50-Minute Probabilistic 
Reflectivity Forecasts 

To obtain a more comprehensive view of the possibilities 
of this potential forecasting system, we prepared and then 
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verified probabilistic forecast equations for the two predict­
ands illustrated above. For both the 30- and 60-minute projec­
tions, two separate equations were developed from subsets 
of the available data samples. Forecasts were then generated 
for independent samples and verified. 

The resulting equations for 30-minute ZTR are: 

P30 = -66.5 + (2.05 EXZTRMX) + (2.31 EXTOPMX) (I) 

based on data from 1985 , 1987, and 1988 , and 

P30 = -50.3 + (1.98 EXZTRMX) + (1.97 EXVILAV) (2) 

based on data from 1985 , 1988, and 1989. Here , P30 is the 
probability that a ZTR value of 40 dBZ or more will be 
observed within a 12 x 12 km region 30 minutes later. The 
predictors EXZTRMX and EXTOPMX are the maximum 
observed ZTR (dBZ) and TOPS (km AGL) values within a 
12 x 12 km region extrapolated to valid time. EXVILA V is 
the mean VIL value within a 12 x 12 km region extrapolated 
to valid time. 

Within their respective dependent datasets, (I) explained 
21 % of the predictand variance and (2) explained 25%. In 
both equations , most of the reduction of variance was con­
tributed by the EXZTRMX term. Though our earlier analysis 
indicated that EXVILMX had the highest nonlinear correla­
tion to future ZTR, EXZTRMX had a higher linear correla­
tion . EXVILMX might have been selected by this screening 
procedure if it had been entered in a "linearized " form (see 
Reap and Foster 1979 or Charba 1977 for an explanation of 
the linearization process). 

Forecas ts for cases in calendar year 1989 were then pre­
pared from (I) and for cases in 1987 from (2). The reli ability 
of the probability forecasts within the independent data sam­
ples is illustrated in Fig. 13. Though there was some tendency 
to overforecast when forecasted values were greater than 
70%, no strong bias appeared in the sample as a whole. 

The probabilistic forecasts may be objectively reduced to 
categorical (yes/no) by applying a threshold probability. An 
analysis of the scores that might be achieved by such categor­
ical forecasts appears in Fig. 14. As before , POD represents 
probability of detection , FAR the false alarm ratio , and CSI 
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Fig. 13. Reliability of 3D-minute probabilistic reflectivity forecasts. 
Verification results are from OKC 1987 and 1989 data. Probabilities 
are valid for 12 x 12 km regions. 
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Fig. 14. Scores for 3D-minute categorical reflectivity forecasts pro­
duced by applying thresholds to probabilistic forecasts. 

the critical success index or threat score. Each score is shown 
for a range of possible threshold probabilities, from I to 40% . 
The peak CSI is achieved at a threshold of 35%, at which 
the POD is 0.71 and the FAR is 0.42. The bias at this threshold 
(not shown) is 1.2. Thus, categorical forecasts from this sys­
tem could detect approximately 70% of the 40 dBZ echoes , 
while the number of "yes" forecasts would exceed the num­
ber of "yes" observations by about 20% . To achieve a POD 
of 0.8, it would be necessary to apply a threshold probability 
of 29, and accept an FAR of 0.48 and bias of 1.5. 

This process was repeated to obtain forecast equations for 
a 20 x 20 km region at a 60-minute projection . The resulting 
test equations are: 

P60 = - 32.1 + (1.40 EXZTRMX) + (2.04 EXTOPMX) (3) 

based on data from 1985, 1988 , and 1989, and 

P60 = -39.6 + (1.48 EXZTRMX) + (2.17 EXTOPMX) (4) 

based on data from 1985, 1987, and 1988. The definition of 
P60 is analogous to that of P30 in (I) and (2). The reduction 
of variance for these equations was 0.10 for (3) and 0.13 for 
(4) . Again, EXZTRMX contributed the most to the reduction 
of variance. 

The results of reliability and verification tests appear in 
Figs. 15 and 16. Categorical forecasts scores (Fig. 16) were 
not radically different from those for the 30-minute forecasts, 
since a larger verification region was specified for these 60-
minute forecasts (400 km" rather than 144 km2

). The peak 
CSI is still achieved at a threshold of 35%, where the POD 
is 0.71, but the FAR and bias are la rger (0.50 and 1.4, respec­
tively). 

9. Discussion 

This study confirms the results of Saffle and Elvander 
(1981) , who reported significant skill at forecasting future 
ZTR as a statistically-derived function of current ZTR and 
the volumetric reflectivity indices VIL and TOPS . Though 
deterioration of skill is evident for 60-minute forecasts, the 
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Fig. 15. As in Fig. 14, except for 50-minute forecasts valid within 
20 x 20 km regions. 

forecasts at least as far as 30 minutes are clearly useful. It 
should be possible to improve the forecasts for projections 
beyond 30 minutes by the incorporation of new predictors 
involving environmental conditions and time rates of change 
of reflectivity characteristics. It might also be useful to state 
the probability that reflectivity will exceed some threshold 
during a future period of time, such as 30 to 60 minutes . 

We now intend to extend this extrapolative-statistical 
approach to quantitative precipitation forecasting. It is possi­
ble that the 30- and 60-minute rainfall accumulation fields 
are less volatile and more spatially continuous than the 
instantaneous ZTR field. Rainfall amount will be treated as 
a function of extrapolated ZTR , VIL , and TOPS over the 
duration of the forecast period. The next phase of this 
research effort is now underway. 
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