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Gust fronts can be sources of new convection as well as 
significant wind events, and are discussed in detail in training 
materials for WSR-88D radar operators . The radar course 
includes a time-lapse photographic view of a spectacular Florida 
gust front that will be described briefly in this note. Numerous 
studies describing the importance of such outflow boundaries 
include Purdom (1976), Holle and Maier (1980) , Weaver and 
Nelson (1982), Wilson and-Schreiber (1986), Droegemeier and 
Wilhelmson (1987), Intrieri et al. (1990), and Kingsmill (1995). 

A network of surface wind stations, radars, and time-lapse 
cameras was deployed south of Lake Okeechobee (Figs. 1, 2) 
during the Florida Area Cumulus Experiment in south Florida 
(Sax et al. 1975). On one ofthe experiment's days, a particularly 
strong and well-organized thunderstorm outflow is photo­
graphed as it moved across this region. Time lapse photography 
of this case is used in the training videotape " Basic Convec­
tion" produced by the WSR-88D Operational Support Facility 
(OSF), Operations Training Branch2

• The training material is 
designed for WSR-88D operators in the National Weather Ser­
vice and the US Air Force. 

In the late afternoon of 12 August 1975, a thunderstorm to 
the north of Lake Okeechobee formed a gust front that moved 
southward (Fig. 2) at an average speed of 21 knots (11 m s - I). 
The maximum recorded gust in the mesonetwork was 43 knots 
(22 m s -I) from the north-northwest. Winds averaged 23 to 33 
knots (12-17 m S-I) during the first 5 minutes after passage 
of the leading edge at stations throughout the mesonet. Temper­
atures dropped by 7°F (4°C) in the northern portion of the 
mesonetwork near Lake Okeechobee during the first 10 to 20 
minutes after gust-front passage, while the drop was 1 rF 
(9.4 0c) at a station about 20 miles (32 km) southeast of the 
Field Observation Site (FOS) located in Fig. 1. 

As the outflow moved south, it encountered dry ground over 
a recently-drained and plowed sugar cane field. The dry ground 
provided a better visible manifestation of the gust front , and 
allowed the clear view of the gust front to the northeast from 

lCurrent affiliation: National Weather Service, NOAA, Tallahassee, 
Florida. 
'The videotape is available from the WSR-88D Operational Support Facil­
ity, Operations Training Branch, 3200 Marshall Avenue, Norman, OK 
73072. 
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FOS in Fig. 3. Not only is the gust front visible, but also 
apparent are the effects of frictional retardation at the surface 
and a secondary wave slightly ahead of the main cold air 
boundary. 

As the boundary continued to the south, a photo was taken 
perpendicular to its movement (Fig. 4) across Lake Okeechobee 
toward the west from Pahokee. It shows a possible gravity or 
buoyancy wave associated with the gust front lifting a mid­
level cloud layer above the shelf cloud. A new thunderstorm 
developed to a height of 12 km as the gust front passed south 
of the lake. The shelf cloud is the low-level accessory cloud 
in a wedge shape that is attached to the thunderstorm base 
along the gust front, as defined in NOAA's Severe Storms 
Spotters ' Guide. This photograph was taken from the same 
location as the time-lapse view that is included in the WSR-
88D training videotape. 
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Fig. 1. Map showing region of south Florida where photos were 
taken of gust front on 12 August 1975. 
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Fig. 2. Map showing Lake Okeechobee, mesonetwork, Pahokee 
and FOS camera sites, and locations of gust front over a two-hour 
period as it passed through area on 12 August 1975. 

Fig. 3. Photograph to the northeast from FOS at 1807 EDT/2207 UTe 12 August 1975. 
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Fig. 4. Photograph to the west from Pahokee at 1813 EDT/2213 UTe 12 August 1975. 




