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Abstract 

It has been suggested that one choose the most unstable 
parcel in the lowest 300 hPa layer of a sounding when cal­
culating convective available potential energy (CAPE). 
This approach is especially useful for cases where insta­
bility is found aloft, and is also applicable when lifting a 
surface- or low-level-based parcel or layer as appropriate. 
Raising a (near) surface parcel to evaluate CAPE is not 
always illustrative of the true nature of the convectively 
unstable environment. An example of such a case exists 
when elevated CAPE is released from parcels lifted along 
and / or north of a frontal boundary. Two brief case stud­
ies of heavy rainfall [>100 mm (24 hPJ episodes in the 
midwestern United States are presented, in which thun­
derstorms resulted from the release of elevated CAPE. In 
both cases the CAPE computed from lifting the most 
unstable parcel (the parcel with the highest Oe in the low­
est 300 hPa layer) was much greater than the CAPE com­
puted by lifting the parcel based on the average thermal 
and moisture characteristics of the lowest 100 hPa layer; 
in one case the latter "mean-parcel" CAPE was zero. 

1. Introduction 

Choosing the most suitable parcel to evaluate CAPE 
has been a somewhat contentious issue, as actual CAPE 
values depend on the particular lifted parcel (Williams 
and Renno 1993; Doswell and Brooks 1993; Doswell and 
Rasmussen 1994). There are at least three approaches to 
this problem: 1) lifting a surface-based parcel (Hales and 
Doswell 1982); 2) lifting a parcel representative of the 
lowest 100-hPa layer (Prosser and Foster 1966; Miller 
1972; Hart and Korotky 1991); and 3) lifting the most 
unstable parcel in the lowest 300 hPa (Doswell and 
Rasmussen 1994). The third method is more applicable 
for evaluating the convective potential of the environ­
ment when a surface-based parcel or layer is not appro­
priate (Doswell and Rasmussen 1994). 
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During our investigation of heavy rainfall-producing 
mesoscale convective systems (MCSs) in the midwestern 
United States, we found numerous episodes in which the 
convection was not rooted in the atmospheric boundary 
layer (as is usually the case with deep convection). These 
storms, known as elevated thunderstorms (defined in 
Colman 1990a, b), occur in response to lifting above a 
cool, stable boundary layer ahead of a surface thermal 
boundary. The environmental wind profile in the vicinity 
of the thermal boundary is typically distinguished by 
sharp veering in the lower and middle troposphere. This 
type of wind profile results in differential thermal/mois­
ture advection. The cool, stable layer beneath the front is 
characterized typically by flow with an easterly compo­
nent. Warm, moist air is transported northward and 
upward above/within the frontal zone, while slightly cool­
er and much drier air is advected by westerly flow in the 
middle troposphere. The resultant stratification of the 
lower troposphere is characterized by elevated convective 
instability (and elevated CAPE), with a layer of convec­
tively unstable air (aOe lap> 0) above the frontal zone 
(often found at or around 850 hPa) and convectively sta­
ble air (aOe lap < 0) below. 

The large-scale lift associated with the approach of a 
short-wave trough and strengthening low-level jet (LLJ) 
are instrumental in lifting this convectively unstable 
layer to saturation, thereby realizing the latent instabili­
ty. Meso-a lifting at or near the frontal zone due to local­
ized moisture convergence could then lift air parcels to 
their level of free convection (LFC), thereby leading to 
strong convection over a limited area. This area is gener­
ally found in the exit region of the LLJ where moisture 
convergence is maximized. 

Elevated thunderstorms can produce copious rainfall 
(Rochette and Moore 1996) or severe weather (Grant 
1995), with large hail being the primary severe weather 
threat. The following is an excerpt from a forecast dis­
cussion from the National Weather Service Forecast 
Office (NWSFO) in Twin Cities/Chanhassen, Minnesota, 
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which illustrates the conditions associated with a partic­
ular episode of elevated thunderstorms that occurred on 
14 October 1998: 

WSR-88D radar reflectivity returns lighting 
up across much of far southwest and south­
central [sicl Minnesota with a number of 3/4 
inch hail reports with some of the activity. 
Convection is elevated but the mixing ratios 
showing up at 850 mb on LAPS generated 
soundings is [sic] incredible for so late in the 
season. At 19Z near KMKT [Mankato, 
Minnesotal .. . the 850 mb mixing ratio was 9 
gm/kg with elevated [sic] CAPE of 575 J/kg. 

The purpose of this paper is to discuss the importance 
of selecting the most unstable parcel in the lowest 300 
hPa when computing CAPE. Toward this end, brief diag­
nostic analyses oftwo heavy rainfall episodes in the mid­
western United States in which lifting the most unstable 
parcel resulted in a significant increase in CAPE will be 
presented. As such, data from these two cases are pro­
vided only to serve as background to the problem, not to 
stand alone as exhaustive case 
studies. The reader is directed to 
the original sources for further 
insight. 

2. Illustrative Cases 

a. 6 June 1993 
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MISSOURI 

24 Hour Precipitation To tals 
Ending 7 June 1993 

Fig. 1. 24-hour total rainfall (mm) ending at 1200 UTC 7 June 
1993 for Missouri, as measured by NWS cooperative network rain 
gauges (after Rochette and Moore 1996). 
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During the morning and 
early afternoon hours of 6 June 
1993, an MCS developed over 
west-central Missouri and trav­
eled southeastward, resulting in 
a narrow swath of heavy precip­
itation as it traversed central 
and eastern portions of the 
state. Rainfall amounts in 
excess of 150 mm (6 in.) fell in 
localized areas of central 
Missouri (Fig. 1). The opera­
tional community was caught off 
guard by this event, as there 
was little mention of rain in the 
national guidance or local fore­
casts. The heavy rainfall-pro­
ducing thunderstorms devel­
oped well north of a quasi-sta­
tionary surface boundary 
extending from the lower 
Mississippi Valley across north­
central Oklahoma into western 
Kansas. Figure 2 reveals that 
surface temperatures over 
Missouri ranged from 11 to 16 
°C (52 to 62 OF), indicative of a 
cool, stable boundary layer, an 
environment not usually associ­
ated with the potential for deep 

Fig. 2. Surface analysis for 1200 UTC 6 June 1993. Solid lines are isobars in 2 hPa increments 
(1012 = 12). Station model as follows: upper left, temperature in OF; bottom left, dewpoint in OF; 
upper right, surface pressure in hPa (1020.4 = 204); lower right, 3-h pressure tendency inhPa. 
Wind reported as follows: full feather and half feather denote 5.0 and 2.5 ms" respectively. C indi­
cates calm, M signifies missing data. Scalloped region signifies area of initial storm development 
(adapted from Rochette and Moore 1996). 



22 National Weather Digest 

CONVECTIVE STAB ILITY ANALYSIS 

I 

J 6/6/93 

stable layer around 800 hPa) superimposed on 
a stable frontal zone layer (surface to 850 
hPa). The Monett profile reveals a similar pat­
tern, with a higher maximum 8e value lower 
along the frontal boundary. As a result, the 
environment associated with the MCS in 
question is characterized by elevated potential 
convective instability. 

12 UTe 

TO PEKA, KS -

:'/ MONET T, M O-· --- -
Elevated thunderstorms require the 

release of convective instability via lifting at or 
above the frontal zone. In the case of elevated 
convection, lifting is not surface-based but 
takes place along or ahead of the frontal 
boundary, often best diagnosed utilizing an 
isentropic perspective. In order to illustrate 
the elevated nature of the lifting in this case, 
the 306 K isentropic surface at 1200 UTC 
6 June 1993 (Fig. 4) is presented. The isen­
tropic perspective is presented to show how 
rising air parcels from Texas and Oklahoma 
were part of the large-scale lifting process. 
Vertical motion on an isentropic surface can be 
expressed via the following: 
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Fig. 3. 1200 UTe 6 June 1993 convective stability analysis for Topeka, Kansas 
(solid) and Monett, Missouri (dashed). Abscissa is 8e (K), ordinate is pressure 
(hPa) (after Rochette and Moore 1996). ap _ de ap 
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Note that the strongest lifting is present 
over central and northern Missouri, which is 
characterized by winds oriented normal to the 
closely spaced isobars, blowing from higher to 
lower pressure; this is the contribution of term 
B of (1), the pressure advection term. In this 
case, rising motion is indicated in the vicinity 
of 850 hPa, within the layer of elevated con­
vective instability. It should be noted that dia­
batic heating associated with the convection 
[term C of (1)] will generally increase the 
upward vertical motion, while the local pres­
sure tendency on the isentropic surface [term 
A of (1)] will detract from the upward motion 

37 +----<> M / S (Moore 1993). Examination of the surface 
divergence field at 1200 UTC (not shown) indi­

Fig. 4. 1200 UTe 6 June 1993306 K isentropic surface. Arrows represent wind 
vectors, dashed lines are isobars (hPa). 

cates generally weak convergence (> -1.0 x 
10.5 S·I) to weak divergence « +1.0 x 10.5 S·I) 

over Missouri, further corroborating the ele-

convection. Further details of this episode may be found 
in Rochette and Moore (1996). 

A simple method of evaluating the convective instabil­
ity of a local environment (and the potential for elevated 
convection) is to examine the vertical profile of equivalent 
potential temperature (8e). Figure 3 is the distribution of 
8e with respect to pressure at Thpeka, Kansas (solid) and 
Monett, Missouri (dashed) for 1200 UTC 6 June 1993. 
Given the location of MCS initiation, the Topeka profile 
most closely approximated the ambient environment in 
the cool sector, while the Monett profile was representa­
tive of the inflow air. The Topeka profile is characterized 
by a potentially convectively unstable thermal stratifica­
tion from 850 to 660 hPa (with the exception of a shallow 

vated nature of the large-scale lift. 
High moisture content is also essential for the release 

of convective instability. Examination of the relative 
humidity (RR) field on the 306 K surface at 1200 UTC 6 
June 1993 (not shown) reveals that the majority of 
Missouri is characterized by RHs in excess of 70%, while 
the 80% isohume encloses the northern third of Missouri, 
most of Iowa, and a north-south sliver through the cen­
tral portion of Minnesota. This verifies that the initial 
thunderstorms developed in a region characterized by 
high values of relative humidity (-80%). 

The effect of parcel choice in CAPE computation is 
demonstrated in Fig. 5, a skew T-Iog P diagram for 
Monett, Missouri, at 1200 UTC 6 June 1993. The cross­
hatched region represents the CAPE based upon the 
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Fig. 5. 1200 UTC 6 June 1993 skew T-Iog P diagram for Monett, Missouri. Horizontal lines depict pressure (hPa), straight slanting (lower 
left to upper right) lines are isotherms (0C), and slightly curved sloping (lower right to upper left) lines are dry adiabats (K). Winds follow stan­
dard notation, with full and half feathers representing 5.0 and 2.5 ms·" respectively, and pennants representing 25.0 ms·'. Cross-hatched 
region indicates convective available potential energy (CAPE) based upon lifting the mean 1 OO-hPa parcel, stippled region represents addi­
tional CAPE based on lifting the parcel with the highest ee value in the lowest 300 hPa (after Rochette and Moore 1996). 

lifting of a parcel based on the average thermal and mois­
ture characteristics of the lowest 100-hPa layer (here­
after referred to as mean-parcel CAPE), while the stip­
pled region represents the additional CAPE realized by 
lifting the most unstable parcel (i.e., the parcel with the 
highest ee, located around 910 hPa) in the lowest 300-hPa 
layer (hereafter referred to as 'best CAPE'). The Monett 
sounding revealed a mean-parcel CAPE of 2258 J kgl, 
suggestive of a moderately unstable environment. 
However, by lifting the most unstable parcel, the best 
CAPE was 4256 J kgl, an increase of more than 88%. The 
Topeka sounding for the same time (Fig. 6) was even 
more dramatic; the mean-parcel CAPE was 699 J kgI, 
while the best CAPE was 2814 J kgI, an increase of more 

than 300%. It is noteworthy that both soundings exhibit­
ed virtually no convective inhibition (CIN), and that both 
represent weakly sheared environments. 

Further corroboration of this difference is unveiled by 
the comparison of plan views of mean-parcel CAPE (Fig. 
7) and best CAPE (Fig. 8). Note that northern Missouri is 
only slightly unstable at best, with mean-parcel CAPE 
values generally less than 500 J kgl. In contrast, the best 
CAPE field over the initiation region reveals a much 
more unstable environment, with values in excess of 
1500 J kgl. Thus, the pre-MCS environment north of the 
warm front on the morning of6 June 1993 had the poten­
tial for strong convection, and conventional CAPE com­
putations would not disclose this fact. 
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Fig. 6. As in Fig. 5, except for Topeka, Kansas. 

The threat for deep convection is even further isolated 
by the examination of analyses of convective inhibition 
(CIN), computed via the mean-parcel and best methods. 
In this case, the mean-parcel CIN for 1200 UTC 6 June 
1993 (Fig. 9) reveals that the atmosphere over the central 
U.S. (including the region affected by the MCS) is strong­
ly capped (~50 J kg!), further downplaying the potential 
for thunderstorm development at this time. However, 
CIN computed through the lifting of the most unstable 
parcel (best CIN, Fig. 10) is generally weaker and much 
smaller in areal extent, with values below 50 J kg! over 
northern Missouri, indicating a much more conducive 
environment for the elevated thunderstorms and exces­
sive precipitation that occurred in this region. 

b. 27-28 April 1994 

From the late afternoon of 27 April 1994 into the 
morning of 28 April 1994, a series of thunderstorm 

complexes produced heavy rainfall from north-central 
Oklahoma across southeast Kansas into east-central 
Missouri (Moore et al. 1998). Rainfall amounts exceed­
ing 125 mm (5 in.) occurred over portions of southeast 
Kansas and southwest Missouri (Fig. 11). The heavy 
rainfall-producing MCSs developed north of a distinct 
quasi-stationary surface boundary extending from the 
Missouri bootheel through southeast Oklahoma into 
north-central Texas. Figure 12 is the 0000 UTC 
28 April 1994 surface analysis, showing a strong baro­
clinic zone with warm-sector temperatures from 28 to 
31°C (82 to 88 OF) and cool-sector temperatures of 5 to 
15 °c (41 to 59 OF). Convective stability profiles at 
0000 UTC 28 April 1994 for Monett, Missouri (solid) 
and Norman, Oklahoma (dashed) are shown in Fig. 13. 
The profiles from both stations are similar to those 
shown for 1200 UTC 6 June 1993, with strong stable 
layers from the surface to 850 hPa (beneath the frontal 
inversion) and potential convectively unstable layers 

-



Volume 23 Number 4 December 1999 

above to 650-700 hPa (with shallow 
stable layers in-between). This ver­
tical stratification is indicative of 
elevated convective instability sup­
porting the MCS over the surface 
cool-sector environment. 

25 

06-06 - 19 93 

12UTe 

The 304 K isentropic surface at 
0000 UTC 28 April 1994 (Fig. 14) is 
presented to diagnose lifting above 
the boundary layer within the frontal 
zone. The strongest lifting on this 
isentropic surface was present over 
northeastern Oklahoma, northern 
Arkansas, extreme southeastern 
Kansas and southwestern Missouri in 
the 850-800 hPa layer. An analysis of 
surface divergence at 0000 UTC (not 
shown) depicted weak divergence (2.0 
to 4.0 x 10-5 S-l) over most of Missouri; 
these findings suggest that the lifting 
was not surface-based. Isentropic 
uplift above the frontal zone was 
responsible for the release of the ele­
vated convective instability, although 
it should be noted that existing con­
vection could disrupt the continuity of 
isentropic surfaces throughdiabatic 
heating. 

Fig. 7. 1200 UTC 6 June 1993 objective analysis of mean-parcel CAPE (J kg-1 ). 

As was the case in the previously 
described episode, high moisture was 
present in the storms' initial environ­
ment at 0000 UTC 28 April 1994. A 
large swath of high RH values (~70%) 
was indicated on the 304 K isentropic 
surface (not shown), covering eastern 
Nebraska, the eastern two-thirds of 
Kansas, southwestern Missouri, cen­
tral and eastern Oklahoma, and most 
of Arkansas. The initial thunder­
storms developed in an area where 
RH values were in excess of 70%. 

06-06 - 1993 
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The differences between the mean­
parcel CAPE and the best CAPE are 
rather dramatic, as evidenced by the 
soundings from Monett, Missouri 
(Fig. 15) and Norman, Oklahoma 
(Fig. 16). Lifting a mean parcel in 
either sounding results in a CAPE 
value of 0 J kg-I, while the best CAPE 
values were 1793 J kg-I (Monett) and 
2479 J kg-I (Norman). This supports 
the assertion that the thunderstorms 
occurring at this time were the result 
of the release of elevated CAPE. 
Comparison of the analyses of mean-

Fig. 8. As in Fig. 7, except for best CAPE (J kg-1). 

parcel CAPE (Fig. 17) and best CAPE (Fig. 18) at this 
time yields further evidence. Mean-parcel CAPE values 
indicate modestly unstable air in central Oklahoma 
(::;500 J kg-I), increasing to the south and east, while the 
best CAPE analysis reveals values in excess of 2000 J kg-I 
over the same area. It should be noted that any discrep­
ancies in CAPE values between those derived from the 

soundings and those shown in plan view are most likely 
attributable to the Barnes (1973) objective analysis 
scheme. 

Analysis of mean-parcel CIN (Fig. 19) reveals that the 
Southern Plains region (including Oklahoma, Arkansas, 
and Missouri) is characterized by weak values «50 J kg-l). 
Meanwhile, the best CIN field (Fig. 20) illustrates that the 
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3. Discussion 

Fig. 9. 1200 UTG 6 June 1993 objective analysis of mean-parcel convective inhibition (GIN; 
J kg-'). 

In two episodes of Midwestern 
heavy rainfall associated with ele­
vated convective instability, it was 
shown that the choice of lifted par­
cel in the computation of CAPE 
made a distinct difference in evalu­
ating the environmental support of 
convection. It was illustrated that 
the CAPE computed by lifting a 
parcel based on the average ther­
mal and moisture characteristics of 
the lowest 100-hPa layer (mean­
parcel CAPE) was often much less 
than that computed by lifting the 
most unstable parcel in the lowest 
300 hPa layer (best CAPE). In one 
of the cases examined the best 
CAPE was sufficiently large to sup­
port strong convection, even though 
the mean-parcel CAPE was nonex­
istent. Analyses of best CIN can fur­
ther isolate regions of potential 
excessive precipitation via elevated 
thunderstorms. 

Regions of non-zero best CAPE 
will typically be associated with 
environments characterized by lay­
ers of convective instability, either 
surface-based or elevated. However, 
best CAPE quantifies this instabili­
ty and relates it directly to parcel 
accelerations in a more-recognized 
form. The ideal situation would be 
to examine CAPE and CIN fields in 
plan view and vertical profiles of 8e 

for specific soundings (observed or 
forecast) to determine the convec­
tive potential for a given region. 

06 -0 6-1993 
12UTC MAX THETA - E CIN (1Ik g) 

In summary, there are convective 
episodes that result in heavy rain­
fall and severe weather that occur 
in environments that do not appear 
to have sufficient instability to sup­
port convection. A thorough analy­
sis ofthe environment that includes 
examining both mean-parcel CAPE 
(CIN) and best CAPE (CIN) will 
highlight situations where elevated 
thunderstorms may occur, and 
should result in better prediction of 
a potentially dangerous situation. 

Fig. 10. As in Fig. 9, except for best GIN (J kg-'). 

region of elevated convection lies in an area of minimum 
CIN «50 J kgl). However, western Kansas and the 
Oklahoma Panhandle are experiencing a localized maxi­
mum of CIN (-150 J kg!), further isolating eastern 
Oklahoma and southwestern Missouri as the region of 
excessive convective precipitation. 

In addition, the presence of modest 
values of best CAPE might indicate 
regions where convective winter 

precipitation (e.g., thundersnow) may occur. 
Modification of existing (and development of future) 
computer software packages should make such a com­
parison relatively simple. 
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Fig. 11. 24-h total rainfall (mm) ending at 1200 UTC 28 April 1994 
as measured by NWS cooperative network rain gauges . 

Fig. 12. As in Fig. 2, except for 0000 UTC 28 April 1994. Station model follows that of Fig. 2, with the following exceptions: solid lines are 
isopleths of altimeter setting (in Hg), cloud cover and genera are included, along with pressure trend symbol. Number preceded by "G" i~di­
cates wind gust in knots. Bold 'B' denotes location of bubble high. Dashed-double dotted line indicates outflow boundary. Scalloped region 
signifies area of initial storm development (adapted from Moore et al. 1998). 
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Fig. 15. 0000 UTC 28 April 1994 skew T-Iog P diagram for Monett, Missouri. Notation follows that of Fig. 5. Stippled region represents CAPE 
based on lifting the parcel with the highest ee value in the lowest 300 hPa. 
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