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Abstract 

The Local Analysis and Prediction System (LAPS), 
developed by the National Oceanic and Atmospheric 
Administration's Forecast Systems Laboratory (NOAA 
FSL), was an integral part of the Olympic Weather 
Support System (OWSS) designed by the NOAA National 
Weather Service (NWS) to supplement the forecasting 
operations in the Peachtree City, Georgia, NWS Forecast 
Office during the 1996 Atlanta Summer Olympic Games. 
This paper presents an objective hourly verification of 
some of the precipitation forecasts produced by the numer­
ical modeling component of LAPS during the summer of 
1996 for the southeastern United States. 

The scores indicated underforecasting at all thresholds 
when the model was initialized at 0600 UTe. A later ini­
tialization improved the bias at lower thresholds, but 
caused overforecasting at higher thresholds. A comparison 
with the precipitation forecasts by the NWS 29-km Eta 
model showed that the high-resolution LAPS system was 
able to produce better precipitation forecasts, particularly 
when initialized with a high-resolution local analysis. 

This paper also presents a discussion of the impact of 
different algorithms used to collocate observed and fore­
casted precipitation data. Higher bias scores (BSs) were 
obtained when the score was computed at the model grid 
points instead of at the station locations. For BSs comput­
ed at the station locations, higher scores were obtained 
when a larger number of grid points surrounding a station 
was used to compute forecasted precipitation at the station. 

1. Introduction 

Precipitation forecasts may have high economic value. 
Knowledge of upcoming precipitation events is important 
to economic activities such as transportation, irrigation, 
hydroelectric power, tourism and sports (Katz and 
Murphy 1997). To support the latter two activities, the 
Olympic Weather Support System (OWSS; Rothfusz et 
al. 1996) was designed by the National Weather Service 
(NWS) to operate during the 1996 Atlanta Summer 
Olympic Games. The OWSS was designed to produce 
high-quality local weather forecasts. The Local Analysis 
and Prediction System (LAPS), developed by the 
National Oceanic and Atmospheric Administration's 
Forecast Systems Laboratory (NOAA FSL), was an inte­
gral part ofthe OWSS. LAPS supplied the Peachtree City, 
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Georgia, NWS Forecast Office with high-resolution, high 
frequency, surface and upper-air weather analyses 
(Albers 1995; Albers et al. 1996) and with local model 
forecasts (Snook et al. 1995). From here on, high-resolu­
tion refers specifically to high horizontal resolution. 

This was one of the first attempts to use a high-resolu­
tion model in an operational environment. Other efforts 
(e.g., Colle et al. 1999) have indicated that fine model res­
olution does lead to improved precipitation forecasts. The 
forecasters in the Peachtree City, Georgia, NWS Forecast 
Office were pleased with the added benefit of LAPS in 
forecasting (Rothfusz and McLaughlin 1997). They point­
ed out that the model depicted well the development ofthe 
sea breeze and the onset of convection. 

Quantitative verification of the model forecasts pro­
duced by LAPS was partially presented by Snook et al. 
(1998), who examined the model's performance in pre­
dicting surface temperature, dewpoint and winds. This 
paper examines the performance of the model in predict­
ing precipitation. Scores are presented hourly during the 
16-hour forecast period, so that model spin-up time and 
predictability can be addressed. The spatial distribution 
of scores is also shown, with the goal of identifying loca­
tions in the model domain where the forecasts are more 
or less reliable. A comparison of the observed and fore­
casted precipitation distributions at the end of the fore­
cast period is also presented through the computation of 
quantiles of the distributions. 

One of the features of the LAPS installation in the 
Peachtree City NWS Office that was most praised by the 
forecasters was the capability of starting a forecast when­
ever they decided it was necessary (Rothfusz and 
McLaughlin 1997). To understand the impact of different 
initialization times, forecasts initialized at 0600 UTC and 
1500 UTC are examined and the precipitation forecasts 
in the afternoon and by the end of the 16-hour forecast 
period are compared. Furthermore, forecasts initialized 
with the LAPS analysis are compared with forecasts ini­
tialized with the NWS 29-km Eta model analysis (Black 
1994), to assess the importance of the LAPS high-resolu­
tion analysis for model initialization. A comparison with 
the precipitation forecasts obtained from the 29-km Eta 
model itself is also presented. Due to difficulties in access­
ing the NOAA database, the number of days used in each 
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analysis is limited and the days used in each analysis do 
not exactly coincide. This point is further addressed in 
Section 2. It should be stressed that these results reflect a 
snapshot of the models as they were in the summer of 
1996. Since then, numerous significant changes have been 
implemented in each model, and the results herein do not 
necessarily reflect the current performance of each model. 

Besides a description and interpretation of the precip­
itation verification, this paper discusses the methodology 
of forecast verification. Forecasted and observed precipi­
tation must be collocated before the scores can be com­
puted. Although the algorithms used to collocate the two 
datasets are seldom discussed in the literature offorecast 
verification, they can strongly impact the scores attained. 
In this paper, different algorithms to interpolate forecast­
ed precipitation to the station locations are discussed, 
and results of verification done at the station locations 
are contrasted with verification done at the model grid 
points. It is shown that verification at the grid points pro­
duces consistently higher scores when the observational 
data network is sparser than the model mesh. 

This paper is organized as follows. Section 2 presents 
the forecast model configuration and the dataset used for 
verification. Section 3 discusses the methodology for ver­
ification. Verification of the LAPS forecasts computed at 
model grid points and at the station locations is present­
ed in Section 4. Section 5 presents the verification of the 
forecasts initialized at a later time and those initialized 
with the Eta model analysis. A comparison with the ver­
ification scores from the 29-km Eta model is presented in 
Section 6. A discussion of the results is presented in 
Section 7 and conclusions are in Section 8. 

2. Model Setup and Dataset Used for Verification 

The model used in this study is the non-hydrostatic 
Scalable Forecast Model (SFM), developed at Colorado 
State University (CSU) and at NOAA FSL, among other 
institutions. The setup of the model was identical to the 
one used during the 1996 Summer Olympic Games that 
took place in Georgia. During the Games, the model was 
run as part of LAPS (Snook et al. 1998) included in the 
OWSS designed by the NWS. 

The model domain was configured with a polar-stereo­
graphic grid (Fig. 1) comprised of 85 points along each 
horizontal axis and 30 vertical levels. The horizontal grid 
spacing was 8 km. In the vertical a stretched grid was 
used with a grid spacing of 100 m near the ground, 
stretching gradually to 1000 m above 7000 m AGL, with 
the top ofthe domain at 17.3 km AGL. 

For the control runs, the model was initialized from 
the real-time LAPS analysis (Snook et al. 1998), which 
used the same horizontal domain and grid spacing as the 
model. The LAPS vertical grid had 21 levels at 50-hPa 
increments. The LAPS forte is that it can incorporate a 
multitude of locally available data into a high-resolution 
local analysis. During the time period of the Olympic 
Games, there were numerous sources of data. LAPS used 
the 60-km Rapid Update Cycle (RUC; Benjamin et al. 
1991) analyses as a first-guess for the upper-air analyses. 
Two WSR-88D Doppler radars were available within the 
LAPS domain, and three-dimensional, radar-derived 
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Fig. 1. LAPS domain (shaded area) and location of observation 
gauges (circles). 

winds were incorporated into the LAPS analyses. Upper­
level winds from 120 to 3770 m were also derived from a 
boundary layer profiler. Hourly surface observations 
were obtained from about 60 standard surface stations, 
which reported in METAR format, along with 50 NWS­
operated mesonet stations. Visible and infrared meteoro­
logical satellite data were used in the computation of sur­
face temperatures and in the cloud analyses. 

Since LAPS did not have a soil temperature and mois­
ture analysis, nor a sea surface temperature (SST) analy­
sis, the soil moisture was initialized at a constant 48% of 
saturation and the SST was set to its climatological 
value. The soil temperature was set to be identical to the 
temperature at the model's first level (48.3 m). 

For lateral and top boundary conditions, the Eta model 
(Black 1994), run by the NWSINational Centers for 
Environmental Prediction at 29-km grid spacing, was used. 
Grids from the Eta were ingested into the SFM every three 
hours using nudging (Davies 1983) over five grid points for 
each lateral boundary, and over four grid points for the 
model top. The lower-boundary conditions were supplied by 
the model's surface parameterization (Louis 1979), which 
computes the fluxes of heat, moisture, and momentum. 
Prognoses of soil temperature and moisture content were 
made according to a parameterization by Tremback and 
Kessler (1985). The vegetation model (Avissar and Pielke 
1989) was run using a variable vegetation initialization 
(Loveland et al. 1991), which characterizes the vegetation 
according to its leaf area index, roughness length, displace­
ment height and root parameters. 

For precipitation physics, the model employed the 
Walko et al. (1995) bulk microphysics scheme, which clas­
sifies the water substance in eight categories: vapor, 
cloud, rain, pristine ice, snow, aggregates, graupel and 
hail. Due to the subtropical summer characteristics of 
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this study, rain was the only type of hydro meteor to reach 
the ground. No cumulus parameterization scheme was 
employed. The radiation scheme utilized was the Mahrer 
and Pielke (1977) formulation with a modification to 
account for the presence of clouds (Thompson 1993). It 
should be noted that this model setup was chosen to 
replicate NOAA FSL's forecasts. It is possible that other 
model configurations (use of a cumulus parameteriza­
tion, variable soil moisture or observed SSTs) might have 
led to different and/or better results. 

The model was initialized at 0600 UTC and integrated 
for 16 hours. Although the Olympic Games ran for 40 
days, from 16 July through 26 August 1996, files for ini­
tialization and boundaries were not available for several 
days, limiting the sample used in this verification to 19 
runs. Since our sample was limited to a small number of 
days, the results presented here should be understood as 
applicable only to this period (summer) in the southeast­
ern US., and should not be extended to the performance 
of the SFM model in general. 

Two experiments, discussed in Section 5, were set up 
in which the model configuration differed from the above. 
For the first experiment, the runs were initialized at 1500 
UTC instead of 0600 UTe. The goal was to test whether 
a late morning initialization would lead to an improved 
forecast for the afternoon precipitation. The second set of 
runs was also initialized at 1500 UTC, but using the 29-
km Eta data for initialization instead of the 8-km LAPS 
analysis, with the objective oftesting for an improvement 
in the forecast due to the use ofthe high-resolution LAPS 
analysis. The first experiment will be referred to as 
LAPSinit experiment, and the latter as Etainit experiment. 

For both experiments, the soil moisture and tempera­
ture initializations were altered to reflect afternoon condi­
tions. The new values were typical numbers obtained at 
1500 UTC from the model runs initialized at 0600 UTC. 
The altered soil moisture was set to 35%, and the altered 
soil temperature was set to a vertically variable profile, 
with a surface value 6°C warmer than the first model level 
decreasing to 2°C colder than the air at a depth of 50 cm. 
AIl other initialization procedures and parameterizations 
employed were identical to the ones used at 0600 UTe. 

The results of the experiments were compared to the 
results ofthe 29-km Eta model itself, to identifY the value 
added by using a high-resolution model for local precipi­
tation forecasting. The days with initial and lateral bound­
ary data available to run the experiments and with 29-km 
Eta outputs available were different than the days with 
data available to the control runs, since the experiments 
required LAPS analyses for different times (starting at 
0600 or 1500 UTC) or from a different source. The choice 
of a set of days with data to initialize all three sets of runs 
would severely limit the size of the samples. Therefore, 
each experiment comprised a different set of days, all 
within the 40-day long Olympic Exercise. The size of the 
samples was 19 days for the control run, 21 days for the 
LAPS runs initialized at 1500 UTC and 22 days for the 
29-km Eta runs. Since the number of days in each sample 
is relatively small and the days used for each experiment 
do not coincide, the conclusions derived from this study 
must be taken cautiously, and not be extended to other 
locations or time periods without further investigations. 
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The results presented here should be interpreted qualita­
tively, since it is not possible to draw quantitative infor­
mation due to the reduced size of the sample. 

To verify the precipitation forecasts, we used the 
Hourly Precipitation Data (HPD) managed by NOAA's 
National Climatic Data Center (NCDC), which include 
amounts obtained from recording rain gauges located at 
National Weather Service, Federal Aviation 
Administration, and cooperative observer stations. 
NCDC performs both automated and interactive quality 
control on HPD data. Preliminary screening of the data is 
based on gross error and neighboring stations' checks, 
and collocated cooperative summary of the day observa­
tions from standard 8-in. gauges. An NCDC quality con­
trol specialist makes the final determination on the valid­
ity of suspect data. 

3. Methodology 

The problem of forecast verification is complex and 
multidimensional. Ideally, one would want to analyze the 
joint distribution of forecasts and observations. Since the 
amount of data for such analysis is huge, a simplification 
of the problem is necessary, and scores that summarize 
the distributions are commonly used. However conve­
nient it might sound, there is not a single number that 
can completely characterize a forecast. Different indices 
and scores evaluate different aspects of the forecast. In 
that light, we have chosen to use several measures, which 
we describe below. 

a. Comparison of observed and forecasted data 
distrib utions 

For each distribution of forecasted and observed pre­
cipitation, quantiles were computed as a form of 
exploratory data analysis. Since the distributions were 
typically characterized by a large number of zeroes (rep­
resenting no-rain events), cases with rain amounts 
smaller than 0.5 mm were eliminated from the distribu­
tion. Although this procedure alters the original distribu­
tion, it makes the results more meaningful, since other­
wise all quantile values would be close to 0.0 mm. The 
distributions' quantiles are shown in quantile-quantile 
(QQ) plots (Wilks 1995), in which only the 0.25-mm and 
greater quantiles were plotted, since the lower quantiles 
were too close to zero mm. 

b. Quantitative methods for forecast verification 

AIl scores employed involve categorical precipitation 
forecasts. The precipitation forecasts are assumed to be in 
discrete categories with a lower and an upper limit. Four 
categories were defined for this study: 0.0 mm :::; p < 2.5 
mm, 2.5 mm :::; p < 12.5 mm, 12.5 mm :::; p < 25.0 mm, and 
p ;::: 25.0 mm, where p is the precipitation amount accu­
mulated since the beginning of the forecast. Verification 
scores will be presented for individual thresholds (2.5, 12.5 
and 25.0 mm), which comprise precipitation events at or 
above the given amount. No verification will be discussed 
for thresholds smaller than 2.5 mm, since the majority of 
the rain gauges used only registers precipitation values of 
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Table 1. Sample contingency table. 'a' represents the number of 
correctly forecast events, 'b' represents the number of erro­
neously forecast non-events, 'c' represents the number of missed 
events (Le., observed but not forecast), and 'd' represents the 
number of correctly forecast non-events. 

OBSERVATION 
F 
0 yes no 
R 

b a+b E yes a 
C 

d c+d A no c 
S 

b+d a+b+c+d T a+c 

2.5 mm and larger. We note that this choice of categories 
was arbitrary. It was not based on the characteristics of the 
observed or modeled precipitation distribution, but chosen 
to match precipitation amounts for which meteorologists 
usually make forecasts (0.1 in., 0.5 in., etc.). 

Bias Scores (BSs), Threat Scores (TSs), and Equitable 
Skill Scores (ESSs) are the performance measures used 
in this study to reduce the comparison of the forecasted 
and observed distributions of precipitation to single num­
bers. To compute these scores, a four-category contin­
gency table was first created. 

1) Contingency tables 

A contingency table relates the number of points with 
observed precipitation in each discrete category to the 
number of points with forecasted precipitation in each 
category. Each row corresponds to a category of forecast, 
and each column to a category of observations. A generic 
contingency table based on two precipitation categories is 
shown in Table 1. In the example shown, the event was 
successfully forecasted to occur a times, and erroneously 
forecasted to occur b times. The forecast missed the event 
c times, and d times the no-event was correctly forecast­
ed. At the edges ofthe table, the marginal distributions of 
the forecasts and ofthe observations are displayed. These 
are simply the sums of the rows or columns of the table, 
and represent the total number of events that fall in each 
category. The sum of all marginal distributions of the 
forecasts is equal to the sum of all marginal distributions 
of the observations, and represents the total number of 
events studied. 

2) Measure of bias 

The BS is used to assess the bias of the forecasts. It is 
the ratio of the number of points at which an event has 
been forecasted to the number of points at which it has 
occurred. Unbiased forecasts have a BS value of 1. When 
overforecasting (underforecasting) occurs, BS is greater 
(less) than 1. The BS is computed as 

BS= a+b. 
a+c 

(1) 
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3) Measure of accuracy 

The TS is used as a measure of forecast accuracy. This 
score complements the BS since it considers the corre­
spondence between each pair of forecasts and observa­
tions. Unlike the BS, it does not reward a correct number 
of forecasted events if their location is incorrect. The TS 
is the ratio between the number of points with correct 
forecasts (a) to the union of the number of points where 
the event was forecast and where the event occurred 
(a+b+c), and is computed as 

TS= __ a __ 
a+b+c (2) 

It should be noted that the TS is not an ideal measure of 
local-scale forecast accuracy. The TS only considers as a 
correct forecast an event in which forecasted and 
observed rain are collocated. Therefore, it gives no reward 
to a good forecast (correct timing, intensity etc.) that is 
displaced from the observed location. The TS was used in 
this study because more sophisticated verification mea­
sures are yet to be developed. 

4) Measure of skill 

To measure skill, we adopted the ESS, as described by 
Schaefer (1990). This score assesses the accuracy of the 
model relative to a forecast of chance, and is computed as 

where 

ESS = a - chance , 
a + b + c - chance 

chance = (a + c Xa + b) . 
a+b+c+d 

c. Treatment of hourly precipitation data 

(3) 

(4) 

Each of the measures described above was computed 
for each hour of each day, and also for the set of days 
being studied. For each hour, both observed and modeled 
precipitation amounts were accumulated from the begin­
ning of the forecast. 

The temporal distribution of the scores enables one to 
investigate aspects of model spin-up and model pre­
dictability. If the scores improve with time, one can 
assume that the model goes through an initial spin-up 
period, in which forecast quality is impacted, whereas if 
the scores decrease with time, one assumes that the 
model loses predictability with time. 

d. Collocation of observations and model output 

All statistical measures described above require that 
forecasted and observed precipitation be at the same 
location. Therefore, either the observed values must be 
represented on the model's grid or the forecasted precipi­
tation must be interpolated to the station locations. The 
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Fig. 2. Quantile-quantile plot for the control run ending at 2200 
UTC. 

difficulty in converting one type of information into the 
other is that observed amounts represent point values, 
while amounts at model grid points represent area aver­
ages. Although these analysis procedures have a large 
impact on the scores obtained from verification, they are 
seldom discussed in the literature. 

Except where specified, the results presented in this 
paper are from verification done at the station locations, 
as recommended in the First Workshop on Model 
Verification, which took place in Boulder, Colorado, in 
June 1998. Model output was analyzed to the station 
locations using a bilinear interpolation involving the four 
points surrounding a station. Section 4c presents a com­
parison of verification performed at the grid and at the 
stations. For such a comparison, the station data were 
analyzed to the model grid points using a Barnes (1973) 
analysis. Ninety percent (90%) of the amplitude was 
retained for waves of 120-km wavelength, and a smaller 
retaining response was used for shorter waves. Section 4c 
also presents results using the 36 model grid points sur­
rounding a station to compute forecasted precipitation at 
the station location. This method is referred to as 6x6, in 
contrast to the bilinear method used throughout the 
paper, referred to as 2x2. 

4. Results for the Control Runs 

a. Verification at 16 hours 

The observed and forecasted distributions can be ini­
tially compared through the Q-Q plot shown in Fig. 2. The 
curve in the figure is always above the 1: 1 line. This indi­
cates that the forecasts allocated insufficient probability 
at the high rain values located at the right tail of the dis­
tribution, and allocated too much probability at the low 
rain values. 
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Table 2. Contingency table for the control run at 2200 UTC. 

OBSERVATIONS (mm) 

F 
0.0-2.5 2.5-12.5 12.5-25.0 >25.0 

0 
R 

0.0-2.5 1342 279 72 42 1735 

E 
C 

2.5-12.5 25 30 11 5 71 

A 12.5-25.0 11 
S 

7 3 3 24 

T >25.0 8 1 0 0 9 
(mm) 

1386 317 86 50 1839 

A contingency table at 16 hours into the run for all 
days and all 124 stations is shown in Table 2. The maxi­
mum possible sample size is 19 days x 124 stations = 
2356 cases. In actuality there were 1839 cases, which 
accounts for stations that did not report. As expected, 
most of the observed precipitation was concentrated in 
the lower precipitation categories, with only a few events 
of higher precipitation amounts. At 2200 UTC (16 h into 
the forecast), 453 (24.6 %) of the cases had observed pre­
cipitation higher than 2.5 mm, versus 104 (5.6 %) cases 
with forecasted precipitation higher than that threshold. 
An inspection of observed and modeled precipitation in 
the higher categories shows that the model had many 
fewer cases with high precipitation than the observa­
tions. For example, the model had 71 cases in which pre­
cipitation occurred between 2.5 and 12.5 mm, while pre­
cipitation was observed in this category in 317 cases. 
Figure 3 summarizes the scores for each threshold by the 
end ofthe forecast period. Underprediction occurred at all 
thresholds (as suggested by the Q-Q plot) and was worse 
at the highest threshold. The BS was 0.23 for the 2.5 mm 
threshold and 0.18 for the 25.0-mm threshold. The best 
BS occurred for the 12.5 mm threshold, with 0.24. 
Precipitation placement was also worse at higher thresh­
olds, with the ESS falling from 0.08 for the 2.5-mm 
threshold to 0.0 at the 25.0-mm threshold. 

In the higher thresholds, there was a decoupling 
between the model and the observations. As an example, 
consider in Table 2 the category of precipitation above 
25.0 mm. The model had nine cases in this category, while 
the observations had 50; therefore, the model severely 
underpredicted at that threshold. But more interesting, 
on the nine occasions that the model predicted in that 
category, the observations did not show precipitation in 
the same category in any. Nine times the observations 
showed less rain, of which eight observations were for 
precipitation amounts under 2.5 mm. The converse was 
also true. Observations showed 86 points in the 12.5-25.0 
mm category. But on those occasions, the model produced 
precipitation higher than 12.5 mm only three times, and 
on 72 occasions (83.7 % of the 86 events), the model did 
not forecast above 2.5 mm. This indicates that the pre­
dictive ability of the model at the high thresholds was 
very limited. Although BSs for the set of all days may not 
be very low for the moderate and extreme rain events 
(since there is a large number of both predicted and 
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Table 3. Bias score (BS) for each threshold (mm) for each day at 
2200 UTe. 

2.5 12.5 25.0 

Jul-18 0.00 - -

Jul-19 0.33 0.00 0.00 

Jul-21 0.03 0.09 0.00 

Jul-23 0.71 0.67 2.00 

Jul-24 0.21 0.00 0.00 

Jul-25 0.13 0.00 0.00 

JUI-26 0.23 0.67 -

Jul-28 0.22 0.00 0.00 

Jul-30 0.30 0.33 -

Jul-31 0.23 0.31 0.00 

Aug-01 0.32 0.46 0.67 

Aug-04 0.54 1.33 0.00 

Aug-08 0.00 0.00 0.00 

Aug-09 0.00 0.00 0.00 

Aug-11 0.44 0.55 0.13 

Aug-16 0.00 - -
Aug-17 0.00 - -

Aug-18 0.00 0.00 0.00 

Aug-24 0.00 0.00 0.00 

observed points in the high categories), a high daily vari­
ability in bias scores is expected, since the observed and 
modeled extreme events do not coincide. Additionally, 
TSs, ESSs and other measures of rain location are 
expected to be low. 

Table 3 shows the BS for each of the 19 days studied 
here. Each column corresponds to a threshold. Some table 
cells show a dash, which indicates that the BS could not 
be computed because no precipitation was observed at or 
above that threshold. This occurred more often for higher 
thresholds. Large differences existed from day to day, but 
in general the bias was less than one, indicating that the 
model tended to underforecast precipitation. 

Table 4 shows the TSs, which also indicated a large 
spread from day to day. At the 2.5-mm threshold, the 
largest TS was 0.24 and there were nine days with TSs of 
zero. Larger TSs were attained for the lowest thresholds. 
For extreme rain events, with thresholds above 12.5 mm, 
the TSs never exceeded 0.13. 

ESSs for different days are listed in Table 5. Several 
days had negative scores, indicating that the placement 
of precipitation by the model was worse than by chance. 
Again, a large spread in ESSs was observed from day to 
day, and scores were worse at higher thresholds. 

Figure 4 summarizes the daily variation for the BS, 
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Fig. 3. Bias score (BS, dotted), threat score (TS, solid), and equi­
table threat score (ESS, dashed) for the 2.5-, 12.5-, and 25.0-mm 
thresholds for the control run ending at 2200 UTe. 
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Fig. 4. Daily time series of bias score (BS, dotted), threat score 
(TS, solid), and equitable skill score (ESS, dashed) for the 2.5-mm 
threshold for the control run ending at 2200 UTe. 

TS and ESS for all stations at 16 h for the 2.5-mm 
threshold. The extreme variability in scores from day to 
day was noteworthy, especially in the BS, depicting the 
decoupling between the model and the observations 
described previously. 

b. Hourly distribution of scores 

The evolution in time of the number of cases forecasted 
and observed for the 2.5-mm threshold shown in Fig. 5 is 
instrumental in the interpretation ofthe physical nature of 
the model's underprediction of precipitation. In the first 
hours of a forecast, the predicted precipitation was close to 
zero, since the model had not yet developed convective 
clouds and precipitation. Observed values were also low 
since the model started at 0600 UTe (0100 EST) normally 
before the daytime precipitation developed. While the 
observed numbers increased almost quadratically as the 
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Table 4. As in Table 3, except for threat score (TS). 

2.5 12.5 25.0 

Jul-18 0.00 - -

Jul-19 0.00 0.00 0.00 

Jul-21 0.03 0.00 0.00 

Jul-23 0.24 0.11 0.00 

Jul-24 0.00 0.00 0.00 

Jul-25 0.13 0.00 0.00 

Jul-26 0.05 0.00 0.00 

Jul-28 0.22 0.00 0.00 

Jul-30 0.24 0.00 -

Jul-31 0.17 0.13 0.00 

Aug-01 0.12 0.00 0.00 

Aug-04 0.11 0.00 0.00 

Aug-08 0.00 0.00 0.00 

Aug-09 0.00 0.00 0.00 

Aug-11 0.18 0.11 0.00 

Aug-16 0.00 - -
Aug-17 0.00 - -

Aug-18 0.00 0.00 0.00 

Aug-24 0.00 0.00 0.00 

day progressed, the forecasted numbers increased almost 
linearly. The result is a growing difference between the two 
curves indicating that the model failed to develop the diur­
nal cycle of observed precipitation, with its increase in 
areal coverage during the afternoon hours. 

Figure 6 shows the verification scores by forecast hour 
for the 2.5-mm threshold. The BS was always less than 
one, since the model was consistently underpredicting for 
this threshold. The increasing trend in BS in the first 
hours of the model forecast can be used as a measure of 
spin-up time (Colle et al. 1999). From Fig. 6, we can infer 
that the model took approximately nine hours to 'spin­
up,' that is, to develop clouds and precipitation. The BS 
reached a maximum of 0.34 at 1600 UTC. The TS and 
ESS gradually increased in time, indicating that the 
model increased its capability of forecasting precipitation 
location throughout the forecast period. The maximum 
TS and ESS were 0.12 and 0.08, respectively, indicating 
the poor accuracy of the model, even for the lowest pre­
cipitation thresholds. 

c. Verification at the model grid points versus at the 
stations 

The scores presented in the previous and following sec­
tions were computed at the observing stations, after the 

25 

Table 5. As in Table 3, except for equitable skill score (ESS). , 
2.5 12.5 25.0 

JUI-18 0.00 - -

JUI-19 -0.01 0.00 0.00 

JUI-21 0.03 -0.Q1 0.00 

Jul-23 0.17 0.09 -0.01 

Jul-24 -0.03 0.00 0.00 

Jul-25 0.05 0.00 0.00 

Jul-26 0.02 -0.Q1 0.00 

Jul-28 0.16 0.00 0.00 

Jul-30 0.20 -0.01 -
JUI-31 0.11 0.11 0.00 

Aug-01 0.Q1 -0.03 -0.02 

Aug-04 0.07 -0.01 0.00 

Aug-08 0.00 0.00 0.00 

Aug-09 0.00 0.00 0.00 

Aug-11 0.04 0.05 -0.01 

Aug-16 0.00 - -

Aug-17 0.00 - -

Aug-18 0.00 0.00 0.00 

Aug-24 0.00 0.00 0.00 

forecasted precipitation was interpolated to the station 
locations using the 2x2 method described in Section 3. In 
the literature, one finds studies in which scores were 
computed at the stations (e.g., Gaudet and Cotton 1998; 
Colle et al. 1999), and others in which the scores were 
computed at the model grid points (e.g., Black 1994; Zhao 
et al. 1997), and still others which do not mention where 
the scores were computed. Moreover, seldom does one 
find a discussion about the choice of methodology 
(Gaudet and Cotton 1998), or about the differences 
between results obtained with either methodology 
(Briggs and Zaretzki 1998; Bernardet 2000). Gaudet and 
Cotton (1998) justified the calculation offorecast verifica­
tion scores at station locations as a measure to avoid 
smoothing the observed values with an interpolation to 
model grid points. The difference between their method 
and the one used in this paper is that, for a forecasted 
value, they used the nearest model grid point, and not an 
average of the surrounding points. This difference in 
method can certainly impact the verification scores. This 
impact was evaluated by Briggs and Zaretzki (1998), who 
discussed the influence on the scores of gridding errors 
introduced by different algorithms used to 
interpolate/extrapolate the observed data to the model 
grid points. They concluded that verification at the sta­
tion locations instead of at the model grid points is the 
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method that introduces the least amount of errors. 
Bernardet (2000) showed that the BSs can be signifi­
cantly different when verification is performed at the grid 
or at the stations. She also discussed the impact of differ­
ent algorithms for interpolation of model forecasts to sta­
tion locations and showed that the algorithms that use a 
larger number of model grid points to compute the fore­
cast at a station location yielded higher BSs, since they 
increase the probability of a station being influenced by a 
non-zero forecast. 

Figure 7 contrasts the BSs for the 2.5-, 12.5- and 25.0-
mm thresholds obtained at the model grid with those 
obtained at the station locations. For all thresholds, the 
BS computed at the grid (BSgrid) was larger than the BS 
computed at the station locations (BSst) at almost all 
times. The largest difference occurred for the highest 
threshold. At 1100 UTC it reached 1.04 for the 25.0-mm 
threshold. For the 12.5-mm threshold, the largest differ-
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Fig. 7. Hourly time series of bias score (8S) for the 2.5- (solid), 
12.5- (dashed), and 25.0-mm (dotted) thresholds computed at the 
model grid pOints (thin lines) and at the station locations (thick 
lines), for the control run. 

ence was 0.42 at 1500 UTC. By the end of the forecast 
period, the difference had diminished to 0.09 for the 12.5-
mm threshold and 0.20 for the 25.0-mm threshold. 

The cause of the difference between BSst and BSgrid 
can be understood using an idealized forecast and observ­
ing system, composed of a domain of 256 (16 x 16) grid 
points with nine rain gauges. Imagine a situation in 
which the model forecasted precipitation at 121 (11 x 11) 
grid points. When this forecast is interpolated to the sta­
tions using the 2x2 method, four stations are forecasted 
to have precipitation (Fig. 8a). Suppose, furthermore, that 
the verification dataset for that day had rain at four sta­
tions, and the objective analysis spread the observed rain 
over 121 grid points (Fig. 8b). In this case BSgrid=12lJ121 
and BS2x2=4I4, so BSgrid = BS2x2 = 1. A similar situation 
may be envisioned in which BSgrid = BS2x2, even ifBS ;e1. 

A distinct situation is now presented, for which 
BSgrid ;e BS2x2. Assume that the model forecasted precip­
itation at 42 (7 x 6) grid points, or one station (Fig. 9a). 
Assume, furthermore, that rain was observed at four 
stations, 121 (11 x 11) grid points (Fig. 9b). The scores for 
this case are BSgrid = 421121 = 0.35 and BS2x2 = lJ4 = 0.25, 
therefore BSgrid > BS2x2. 

These simple examples show that the relative magni­
tudes of the BSgrid and the BS2x2 can be determined by 
the spread of the model forecasted precipitation over the 
stations. Since the model grid spacing is eight km, a fore­
casted event using the 2x2 method can only extend for 
eight km. As a consequence, it is common that model fore­
casted events cover few observing stations, driving the 
BS2x2 down. To support this idea, the BS6x6 was comput­
ed. Through this method, forecasted precipitation events 
can extend over 3x8=24 km and potentially cover a larg­
er number of stations. In the example showed in Fig. 9a, 
four stations receive precipitation if the 6x6 method is 
used, therefore BS6x6 = 414 = 1.0, BSgrid = BS2x2, and 
BS6x6 > BS2x2. 

BSs computed using the 6x6 method for the actual 
forecasts are shown in Fig. 10 for the 2.5-, 12.5- and 25.0-
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Fig. 8. Schematic model grid and gauge locations. a) The shaded region represents the area covered by forecasted precipitation. The filled 
(open) dots are gauges with (without) interpolated forecasted precipitation. b) The filled (open) dots represent gauges with (without) observed 
precipitation. The shaded region represents the area covered by observed precipitation analyzed to the model grid. 
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Fig.9. As in Fig. 8, but for a different event. The half-filled dots in (a) represent gauges that receive interpolated precipitation when the 6x6 
method is used. 

mm thresholds. In general the scores were higher using 
the 6x6 method, since a larger number of stations with 
forecasted precipitation was generated. 

The TS and the ESS are also dependent on the choice 
of location for verification, and on the algorithms used. 
Consider again the idealized model and observation sys­
tem shown in Figs. 9a and b. One could consider "shifting" 
the location ofthe model forecasted precipitation in such 
a way as to keep it within the range of one station, but 

altering the number of model grid points with correct 
forecasts. This exercise would alter the TS and ESS com­
puted at the grid (TSgrid and ESSgrid, respectively) with­
out changing their counterparts computed at the station 
locations, and would yield situations in which the scores 
computed at the grid are different than the ones comput­
ed at the stations. 

A comparison of ESSs computed at the grid and at the 
stations for the actual forecasts is presented in Fig. 11. 
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Fig. 10. Hourly time series of bias score (8S) for the 2.5- (solid), 
12.5- (dashed), and 25.0-mm (dotted) thresholds computed at the 
stations when using the 2x2 (thin lines) and the 6x6 (thick lines) 
methods, for the control run. 

For the 2.5-, 12.5- and 25.0-mm thresholds, 
ESSgrid > ESS2x2 at almost all times. This indicates that 
for a given number of stations with correct forecasted 
precipitation, the area with forecasted precipitation in 
the model largely superposed the area with observed 
analyzed precipitation. 

d. Spatial distribution of scores 

The spatial distribution of scores at the 2.5-mm 
threshold is shown in Fig. 12 for two different times: 1600 
UTC, 10 h into the run, and 2200 UTC, 16 h into the run. 
These times correspond to the maximum BS and to the 
end of the forecast period as seen in Fig. 6. 

The spatial distribution of ESSs showed a correlation 
with topography. The highest values of the ESS at 1600 
UTC were found along the Appalachian Mountains along 
the Tennessee-North Carolina border, on the South 
Carolina-North Carolina border and in the Savannah 
River valley along the border between Georgia and South 
Carolina. Throughout the rest of the domain, ESSs were 
close to zero. At 2200 UTC, the higher ESSs were still 
located on the Appalachian Mountains and in the 
Savannah River valley, but there was also a maximum 
that extended northeastward from the Savannah River 
valley, parallel to the Atlantic Coast, approximately 120 
km inland, covering central South Carolina. A local max­
imum was also present in central Alabama, in the west­
ernmost part of the domain. 

The BSs also had a high spatial variability that could 
be correlated both with topography and continentality. At 
1600 UTC, values varied between zero and 2.0. The max­
imum BSs were located in a band oriented parallel to the 
Atlantic Coast. This region coincides with the gentle slope 
ofthe terrain, leading from the coast to the Appalachians 
along northern Georgia and South Carolina, and with the 
location where the highest ESSs were found at 2200 
UTC. Relatively high BSs were also found on the north-
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tions (thick lines), for the control run. 

ern boundary of the model domain, in the Appalachian 
Mountains. Near zero BSs were found near the coast, 
indicating that the model never produced precipitation at 
these stations by this time. 

At 2200 UTC, BS values continued to vary between 
zero and 2.0. BSs near 1.0 were found along the 
Appalachians, and a band of relatively high BSs (up to 
2.0) extended through central Georgia and South 
Carolina, oriented parallel to the Atlantic Coast, 'as it did 
at 1600 UTe. 

5. Forecasts Made A Posteriori 

In this section we discuss two sets of retrospective 
runs made with model configurations different than the 
control forecasts. Details of the configurations were dis­
cussed in Section 2. Experiment LAPSinit was initialized 
at 1500 UTC with the LAPS analysis and experiment 
Etainit was initialized at 1500 UTC with the Eta analysis. 
All verification scores were computed at the station loca­
tions, and the 2x2 method was used to analyze the fore­
casted data to the stations. 

a. Runs initialized at 1500 UTe with the LAPS analysis 

The Q-Q plot in Fig. 13 shows a behavior quite differ­
ent than the one displayed by the control run. At the left 
tail of the distribution, the points fell close to the 1: 1 line, 
indicating that the model had the correct number of 
points forecasted at the low thresholds. However, for 
higher quantiles, the curve fell below the 1:1 line, indi­
cating overforecasting of precipitation by the model. 

Figure 14 shows the hourly evolution ofthe number of 
points with forecasted and observed precipitation at the 
2.5-mm threshold for the LAPSinit experiment. Note that 
the number of observed points was different than the one 
for the control experiment (Fig. 5). This happened 
because the hours of accumulation for each experiment 
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were different, since the control experiment was initial­
ized at 0600 UTe and the LAPSinit experiment, at 1500 
UTe. At 16 hours into the forecast, 559 points registered 
observed precipitation, 106 more than for the control 
experiment. The difference is due to the precipitation 
regime, which is characterized by afternoon clouds and 
precipitation development. The number of points with 
forecasted precipitation was always inferior to the 
observed number, yielding a BS lower than one. 

A comparison of Figs. 6 and 15 indicates that the 
LAPSinit BS was always larger than the BS for the con­
trol forecasts, suggesting that the model was capable of 
producing a more realistic number of precipitation points 
when it was initialized at 1500 UTe. Although there was 
consistent underforecasting, the BS increased monotoni­
cally with time, denoting that the model was keeping up 
with the precipitation development. The BS for the 2.5-
mm threshold ended the forecast period at 0.66. The ESS 

for this threshold at the end of the forecast period (Fig. 
15) was slightly higher (0.10) than the one for the control 
forecasts. The TS was larger than the one for the control 
forecasts, which reflects the influence of a higher bias in 
that score (Schaefer 1990). The scores indicated that a 
better positioning of the late afternoon precipitation was 
achieved with a 1500 UTe initialization rather than with 
a 0600 UTe initialization. At 2200 UTe, LAPSinit showed 
a BS of 0.26 and a ESS of 0.04, while the control forecasts 
had a BS of 0.23 and an ESS of 0.08. This very small dif­
ference is partially caused by the fact that the ESS 
increased in time and 2200 UTe is just seven hours into 
the LAPSinit forecasts, still within the spin-up period. 

Figure 16 shows that the BS at 16 h into the run 
increased with threshold. The BS was larger than 1 for 
the 12.5- and 25.0-mm thresholds, reflecting excessive 
areas of forecasted rain at the higher thresholds. The Q­
Q plot also pointed to overforecasting at the right end of 
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the distribution. The TS and the ESS decreased for high­
er thresholds, indicating that the model had the best per­
formance placing precipitation at the lower thresholds. 

b. Runs initialized at 1500 UTe with the 29-km 
Eta model analysis 

The Q-Q plot for this experiment is shown in Fig. 17. 
The behavior in this case was different than both cases 
discussed previously. For the lower thresholds, the curve 
fell above the 1:1 line, indicating that the model was allo­
cating too much probability to low values. For values in 
the center of the distribution, the model allocated the cor­
rect amount of probability. However, at the right tail of 
the distribution, the curve fell below the 1: 1 line. This 
would suggest, as discussed for the LAPSinit experiment, 
that the model had too many points with high precipita­
tion amounts. However, this curve must be interpreted in 
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the light of the methodology used to select the data to 
compose it. As discussed in Section 3, all cases with pre­
cipitation amounts less than 0.5 mm were excluded from 
the data series. Although in the previous cases discussed, 
this exclusion left the observed and forecasted series with 
a similar number of cases, for the Etainit experiment the 
modeled series was left with approximately half the num­
ber of the observed series. Consequently, caution is need­
ed to interpret the right tail of the distribution in the Q­
Q plot. The verification scores described below will aid 
this interpretation. 

The hourly evolution of the number of points with 
forecasted and observed precipitation for the Etainit 
experiment is shown in Fig. 18. Note that the number of 
observed points was similar to the one for the LAPSinit 
experiment (Fig. 14). This was a coincidence, since 
although both experiments comprised 21 days, the days 
chosen for each experiment were different, because the 
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Fig. 18. As in Fig. 14, except for the Etainit experiment. 

days with initialization data available were different. 
The number of points with forecasted data in the Etainit 
experiment, on the other hand, was significantly differ­
ent than the one from the LAPSinit experiment. The Eta­
initialized model had no points with forecasted precipi­
tation at or above the 2.5-mm threshold up to six hours 
into the run, and thereafter started producing precipi­
tation quite slowly. The result was a BS that never got 
above 0.20. 

The time series of the BS, TS and ESS at the 2.5-mm 
threshold is shown in Fig. 19. The BS increased monotoni­
cally with time, but the underforecasting was more pro­
nounced than for the LAPSinit experiment (Fig. 15) and for 
the control forecasts (Fig. 6). The TS also increased with 
time, to end the forecast period at 0.07. The ESS peaked at 
0300 UTC with 0.04 and ended the forecast period at 0.03. 
The values for TS and ESS were considerably lower than 
their counterparts for the LAPSinit experiment (Fig. 15), 
indicating that for this precipitation threshold the LAPSinit 
experiment produced a superior forecast. 
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As with the LAPSinit experiment, the BS for the Etainit 
experiment increased with precipitation threshold (Fig. 
20). BSs for all thresholds were smaller than one. 
Referring back to the Q-Q plot, we note that the low val­
ues of probability allocated at the right end of the distri­
bution were related to the large number of forecasted 
cases with rain amounts less than 0.5 mm, which were 
excluded from the distribution, and not to overforecasting 
at high thresholds. The TS and ESS decreased with 
threshold. The TS and ESS for all thresholds at 16 h were 
lower than their LAPSinit counterparts. 

6. Comparison with Forecasts from the 29-km 
Eta Model 

In this section a verification of the forecasts from the 
29-km Eta model initialized at 1500 UTC is performed, 
and a comparison with the results from the last section is 
presented. Details of the Eta model can be obtained from 
Black (1994). Verification results are available only every 
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three hours, since that was the frequency with which 
model output was stored. 

All verification scores were computed at the station 
locations, and the 2x2 method was used to analyze the 
model data to the stations. Twenty-two days during the 
Olympic Exercise were available for the computation of 
the verification scores. 

Figure 21 shows the evolution in time ofthe number of 
cases with observed and modeled precipitation at or 
above the 2.5-mm threshold. The curve of observed cases 
is similar to the one of experiment LAPSinit; the number 
of cases increased throughout the forecast period, to 
reach 570 by 0600 UTe. The forecasted curve, however, 
behaved quite differently than the results described for 
the previous experiments. It decreased until 0300 UTe, 
and increased thereafter. The number of cases with fore­
casted precipitation was much higher than the observed 
number, especially in the early hours. Further investiga­
tion of the data (not shown) indicated that the large 
majority of forecasts early in the period was associated 
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Fig.23. As in Fig. 16, except for the 29-km Eta model. 

with convective precipitation. This suggests that the con­
vective parameterization ofthe Eta model may have been 
activated spuriously in the first hours of forecast, possi­
bly by gravity waves or other imbalanced circulations, a 
typical problem of the first few hours after model initial­
ization. 

Figure 22 shows the hourly evolution ofthe BS, TS and 
ESS for the 2.5-mm threshold. As expected, the BS was 
large especially in the first hours of the forecast, it 
reached 8.78 at 1800 UTe, and overforecasting during 
the whole period. The TS increased in the first hours of 
forecast, had a minimum at 0300 UTe and increased 
again by 0600 UTe. The ESS peaked at 2100 UTe, and 
then decreased, to peak again at 0600 UTe. The ESS was 
comparable to the ones for LAPSinit and Etainit. A com­
parison indicated that the ESS for the Eta model was 
higher than its counterparts in the beginning of the fore­
cast period (until 2100 UTe) and at 0600 UTe, the ESS 
was 0.05, which fell between the value of 0.1 for LAPSinit 
and 0.03 for Etainit The values of TS were three times 
higher than the ones for Etainit, which reflected the influ­
ence of the bias in the TS (Schaefer 1990). The TSs were 
higher than the ones for LAPSinit up to 0000 UTe, after 
which the LAPSinit TSs were higher. 

The variation in 0600 UTe scores with threshold is 
shown in Fig. 23. The overforecasting noted previously for 
the 2.5-mm threshold was limited to that threshold. 
There was actually underforecasting at the higher 
thresholds, with BSs close to zero. Due to the lack of fore­
casted rain, the TS and ESS were near zero at high 
thresholds. 

7. Discussion 

The NWS demonstrated its state-of-the-art techniques 
for weather forecasting during the 1996 Atlanta Olympic 
Games. One of the goals of this paper was to verify the 
precipitation forecasts produced by LAPS during that 
period. The observed and forecasted precipitation distrib­
utions were initially compared using Q-Q plots, and sub­
sequently three scores were used for verification: the BS, 
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to verifY the degree of areal overforecasting or underfore­
casting of precipitation, the TS, to check whether the pre­
cipitation was forecasted in the correct location, and the 
ESS, to compare the model forecasts with those obtained 
by chance. It must be pointed out that the use of the TS 
and the ESS for verification of mesoscale forecasts is prob­
lematic. These scores are low when the forecasted and 
observed precipitation areas do not overlap. In a regime of 
convective precipitation, as is prevalent in the southern 
US. in the summer months, it is possible that the forecast 
area of precipitation might be a few kilometers offset from 
the observed precipitation area. Such forecasts will lead to 
low TSs and ESSs, although they may contain valuable 
information to operational forecasters about the actual 
development of precipitation and its characteristics 
(severity, timing, duration, translation speed, etc.). 
However, since scores more appropriate for the verifica­
tion of mesoscale precipitation have yet to be developed, 
these traditional scores were resorted to in this study. 

One of the main findings of verification of the forecasts 
initialized by the LAPS analysis at 0600 UTC was the 
consistent underprediction of precipitation. The model 
took about nine hours to spin up (start producing clouds 
and precipitation), and at the 2.5-mm threshold, the BS 
peaked at 0.34 at 1600 UTC and decreased after that. At 
the end of the period, the highest BS occurred for the 
12.5-mm threshold, and the lowest for the 25.0-mm 
threshold. Forecasts initialized at 1500 UTC with the 
LAPS analysis showed a different behavior. They devel­
oped clouds and precipitation quicker and displayed a BS 
for the 2.5-mm threshold that continuously increased 
with time, to peak at the end of the forecast period at 
0.66. The amount of precipitation at the 12.5- and 25.0-
mm thresholds, however, was too large. The BS at higher 
thresholds was excessively large, reaching 1.53 for the 
25.0-mm threshold. When the Eta model was used for ini­
tialization at 1500 UTC, the spin-up of precipitation was 
much slower. The model did not start producing precipi­
tation until 2100 UTC. This could indicate that a local 
high-resolution analysis for model initialization better 
describes the mesoscale boundary layer convergence 
zones that lead to cloud and precipitation development 
and thus significantly impacts models that use a 'cold 
start' (i.e., initialized without clouds and precipitation). 
The fact that LAPSinit had a faster spin-up is possibly 
attributable to the fact that the majority of the supple­
mental data LAPS used was surface data. By 1500 UTC 
this data better depicted a mixed boundary layer and 
thus connectivity to the upper atmosphere. 

Verification of the forecasts obtained from the 29-km 
Eta model itself showed that overforecasting occurred at 
all times for the 2.5-mm threshold, being worse at the 
early hours of forecasting, when the BS was as high as 
8.78. By 0600 UTC the BS had decreased to 1.21. For 
higher thresholds, the BS was always close to zero, indi­
cating that the 29-km Eta model did not produce realis­
tic areas of precipitation at that threshold. In summary, 
at the 2.5-mm threshold, there was underforecasting by 
the LAPS model, whichever way it was initialized, and 
overforecasting by the Eta model. Both these biases were 
Worse at the first hours of forecast and improved with 
time. At higher thresholds, the Eta model severely under-
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estimated precipitation, while LAPSinit overestimated, 
and Etainit slightly underestimated. Since the Eta was 
run with a 29-km horizontal grid spacing, it was some­
what expected that it underestimated the larger amounts 
of precipitation, because the modeled amounts represent 
an average over a grid cell area. Models with larger grid 
spacings, therefore, must produce smaller amounts of 
precipitation. 

The forecasted location of precipitation by these mod­
els, expressed by the ESS, was quite poor. The ESS at the 
end of the forecast period for the control forecasts was 
0.08, similar to the ESS for the forecasts initialized at 
1500 UTC with the LAPS analysis (0.10). The ESS was 
lower for the runs initialized with the Eta model analysis 
(0.03) and for the runs with the 29-km Eta model (0.05). 

A large variability of scores was observed from day to 
day, especially at the higher thresholds, for which the 
forecasted and observed precipitation was decoupled. The 
16-h ESS for the 2.5-mm threshold for the control fore­
casts varied from -0.01 to 0.20. Large variability was also 
present in the spatial distribution of scores. The control 
runs produced the BSs closest to one and had better per­
formance in precipitation placement in the Appalachians 
and on the gentle slopes of South Carolina and central 
Georgia, which connect the Atlantic Coast with the 
mountains to the northwest. The low BSs attained near 
the shore on the South Carolina-Georgia border suggest 
that the model is too slow in developing rain as the con­
vective systems forced by the sea breeze move inland. 

The verification scores presented are quite low. For the 
control case, the BS shows that the area covered by fore­
casted precipitation was not even half of that covered by 
observed precipitation, and the area covered by correct 
forecasts was less than 10% of that covered by forecasted 
plus observed precipitation. This indicates that a lot of 
improvement is still necessary in the forecasts of sum­
mertime precipitation in the Southeast. 

The TSs and ESSs attained in this study are also 
somewhat lower than the ones from other studies dis­
cussed in the literature. One reason is that TSs and ESSs 
tend to be higher for forecasts computed using larger grid 
spacings because the misplacement of precipitation is not 
as evident. Precipitation misplacements are only 
accounted for if they are larger than the model grid spac­
ing. Therefore high-resolution configurations, such as the 
one used in this paper, are very sensitive to displace­
ments of just a few kilometers. Gaudet and Cotton (1998) 
presented the verification of 17 24-h precipitation fore­
casts done by the Regional Atmospheric Modeling 
System (RAMS) at 16-km grid spacing for April 1995 over 
Colorado. On average, a BS of 0.93 and a TS of 0.48 were 
obtained for the 2.5-mm threshold. Colle et al. (1999) also 
examined high-resolution precipitation forecasts over a 
particular region, the Pacific Northwest. They compared 
the performances of the 24-h forecasts by the 12-km 
Mesoscale Model version 5 (MM5), the 36-km MM5 and 
the 10-km Eta model during the winter of 1996-1997. 
They presented their results every six hours, and noted 
that the model took about 12 h to spin up. During that 
time, the BSs increased, and then settled around 1.2 for 
the 2.54-mm threshold, around 1.0 for the 7.62-mm 
threshold and around 0.7 for the 12.7 -mm threshold. The 
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ESSs peaked 12 h into the forecast and then decreased. 
For the 2.5-mm threshold, the highest ESS was about 
0.34. Higher thresholds yielded lower ESSs. Black (1994) 
presented scores for 24-h forecasts by the 80-km Eta 
model and by the 40-km meso-Eta model for November 
1993, and showed that the higher resolution meso-Eta 
model performed better at all thresholds. The ESS 
peaked at approximately 0.4 for the 6.35-mm threshold. 
The BS was slightly above 1.0 for thresholds up to 12.70 
mm, and quickly decreased for higher thresholds. It is 
possible that if more sophisticated model physics had 
been employed (e.g., use of a cumulus parameterization, 
observed SSTs, and variable soil moisture initialization) 
the scores obtained might be higher. 

The low ESSs obtained for the Olympic forecasts are 
partially related to the difficulty of the forecasting prob­
lem. The forecasts are for summer, when convection is 
less organized, lowering the predictability. Junker et al. 
(1989) showed that the TSs for the 190.5-km Limited­
area Fine-mesh Model (LFM) and for the 90-km Nested 
Grid Model (NGM) run by the NWS National Centers for 
Environmental Prediction (NCEP; then National 
Meteorological Center, NMC) displayed a pronounced 
reduction during the summer months. Schwartz and 
Benjamin (1998) presented the BS and the ESS for 13 24-
h forecasts done by the 60-km Rapid Update Cycle-2 
(RUC-2) model and by the 48-km Eta model during sum­
mer 1997. The ESSs peaked at 0.16 for both the 6.35-mm 
threshold in the 48-km Eta model and the 2.5-mm 
threshold in the RUC-2 model. 

The low BSs obtained in this study may be partially 
attributed to two other factors. First, unless where speci­
fied, the scores presented in this paper were computed at 
the station locations using four model grid points sur­
rounding a station to compute the forecasted precipita­
tion at that station. It was shown that when a larger 
number of model grid points is used or when the verifica­
tion is performed at the model grid points instead, larger 
BSs are obtained. Du et al. (1997) mentioned (but did not 
show or discuss) that better verification results were 
obtained when the scores for an extreme precipitation 
case study were computed at the model grid. Second, the 
rain gauges used for the verification dataset only register 
amounts at 2.5 mm increments. It is possible, therefore, 
that in the beginning of the forecast period, there was 
already up to 2.4 mm accumulated in the gauge. In that 
case, 0.1 mm of rain may fall, and the model may cor­
rectly forecast this amount, but the gauge will register 
2.5 mm, thus producing an underforecast. Colle et al. 
(1999) provide a thoughtful discussion ofthis problem. 

8. Conclusions 

The 16-h forecasts by LAPS initialized at 0600 UTC 
during the 1996 Olympic Games underpredicted precipi­
tation at all threshold amounts studied. In general, less 
than half of the area covered by precipitation was fore­
casted. Location of precipitation was correctly forecasted 
in less than 10% of the area of forecasted plus observed 
precipitation. The underforecasting was related to a long 
spin-up time, and to the inability ofthe model to keep up 
with the increased area of observed precipitation in the 
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afternoon hours. Scores that measure placement of pre­
cipitation improved in time, indicating that the model did 
not lose predictability during the forecast period. 
Initialization of the model at 1500 UTC reduced the prob­
lem of underforecasting at the light thresholds, although 
it created overforecasting at the high thresholds. 

Forecasts initialized with the 29-km Eta model analy­
sis at 1500 UTC took much longer to develop precipita­
tion, stressing the importance of a high-resolution initial­
ization for models with a cold start. The forecasts initial­
ized with the LAPS analysis had better performance, as 
measured by BS and ESS, than the ones initialized with 
the Eta model analysis. 

A comparison of the high-resolution forecasts, initial­
ized with the 8-km LAPS data with the forecasts by the 
29-km Eta model, both initialized at 1500 UTC, showed 
that the placement of precipitation by the LAPS model 
was slightly better at the end of the forecast period. At 
the higher thresholds, the LAPS model was able to pro­
duce precipitation, which the 29-km Eta was not. At the 
2.5-mm threshold both models had problems at the first 
hours of forecasts. The LAPS model took several hours to 
start producing precipitation, while the 29-km Eta model, 
which used a cumulus precipitation, had excessive 
amounts of rain. Later in the forecast, the BS of the LAPS 
model increased and that of the Eta model decreased, so 
both ended the forecast period closer to one, but the place­
ment of precipitation by the LAPS model was better. 

A comparison of verification scores using different 
algorithms to interpolate the forecasted precipitation at 
the station locations was presented. It was shown that 
the BS increased when a larger number of grid points 
surrounding a station was used to compute the forecast­
ed precipitation at that location. It was also shown that 
the BS computed at the station locations was lower than 
the BS computed at the model grid points. 
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