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Abstract 

If aviation forecasters are to understand why pilots 
complain of rough ridesj n some weather situations over 
mountains, they should understand how mountain waves 
produce turbulence. Unfortunately, the extensive research 
in breaking mountain waves has barely reached opera­
tional meteorology. This paper summarizes the pertinent 
theory so that a forecaster can recognize the atmospheric 
conditions favorable for mountain wave breaking. The 
theory describes two primary parameters needed for 
mountain wave analysis. First is a local non-dimensional 
amplitude number (an inverse Froude number). When 
this number is greater than one, the wave is nonlinear 
which indicates wave breaking. Second is the wave drag 
which estimates the wave energy available for turbulence. 
These two parameters depend on the vertical distribution 
of stability and wind, which a forecaster can assess on 
atmospheric soundings, and the height of the mountain. A 
new term, "breaking wave drag," is defined as the wave 
drag of turbulent waves and is a useful metric for diag­
nosing aircraft turbulence in mountain waves. Breaking 
wave drag can be computed from the stability and wind 
vertical profiles when the mountain height is known. 
Certain atmospheric conditions favor two nonlinear 
enhancements of mountain waves, hydraulic jump-Wre 
phenomena and wave reflection/resonance. In order to 
forecast breaking wave drag over large areas, the MWAVE 
algorithm was developed to apply the mountain wave 
equations to model soundings over high terrain. 

1. Introduction 

Experienced aircraft pilots know that when they fly 
over mountainous terrain, they may encounter turbu­
lence caused by mountain waves. Experienced aviation 
meteorologists know that only pilot reports of turbu­
lence associated with thunderstorms can match the 
severity of some pilot reports for mountain wave tur­
bulence. Mountain waves are sometimes associated 
with significant aircraft accidents (Wurtele 1970; 
Ralph et al. 1997). Research in the early 1950s esti­
mated one mountain wave updraft speed at about 40 
m S-l (Blumen 1990) - a speed comparable to vertical 
motion in severe thunderstorms. 

Mountain waves also cause severe downslope winds 
that have produced major damage in cities such as 
Boulder, Colorado (Brinkman 1974). Wind gusts greater 
than 45 m S-l are observed in the stronger downslope 
wind cases. Again, the severity of some downslope wind 
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events can only be matched by the severity of some thun­
derstorm events. 

Mountain waves develop as air flows over a mountain 
in a stably stratified atmosphere. Since buoyancy is the 
restoring force, mountain waves are internal gravity 
waves. Mountain waves oscillate in the vertical at the 
Brunt-Vaisrua frequency: 

N=(~ d0)Yz 
e dz 

(1) 

where g is gravitational acceleration, ® is the potential 
temperature, and dz is the layer thickness. Note that in 
unstable conditions (N < 0) air parcels accelerate away 
from their original level and no gravity wave develops. 

If the wave amplitude is large enough, then the waves 
become unstable and break. Analogous to breaking water 
waves, the atmospheric flow becomes turbulent which 
can affect an aircraft. Most mountain waves probably do 
not break. Forecasters are familiar with mountain waves 
seen on satellite imagery in the lee of mountains. Since 
the wave energy propagates horizontally, these do not 
break. Even waves with significant vertical propagation 
do not break unless they encounter special atmospheric 
conditions. Thus, the forecast problem is determining 
whether these special atmospheric conditions exist over a 
mountain. 

Numerous investigators have published research arti­
cles furthering the understanding of mountain waves, 
but few have focused on their turbulence-producing 
potential. AE a result, practical turbulence forecast meth­
ods are rare. Nevertheless, two efforts appear to have 
promise. First, high resolution numerical models have 
been successful in simulating breaking mountain waves 
(e. g. Doyle et al. 2000). However, the resolution needed to 
run these models (1 km horizontal and 200 m vertical 
grid spacing) over large mountainous regions is many 
years away from operational meteorology. Second, moun­
tain waves transport momentum upward from the moun­
tain, but any turbulence aloft dissipates the mountain 
wave. This causes the momentum to be deposited onto 
the general atmospheric flow at that level which slows 
the wind. Today's numerical forecast models have to 
parameterize these effects in order to keep from over­
forecasting the wind speed (McFarlane 1987). Therefore, 
turbulence is a byproduct of this parameterization. 
Bacmeister et al. (1994) outlines a dynamically-based 
algorithm for forecasting mountain wave turbulence 
based on McFarlane's method. 
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Fig. 1. Numerical solutions to wave equations for varying terrain 
shapes, a) symmetrical, b) gentle windward/steep leeward slope, 
and c) steep windward/gentle leeward slope. (From Li"y and Klemp 
1979) 
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The McFarlanelBacmeister method computes a non­
dimensional wave amplitude which is related to wave 
breaking. By examining the momentum flux or wave ener­
gy lost, the method can estimate turbulence intensity. The 
method works well in the stratosphere where the waves 
are mostly linear (i.e. the wave fluctuations locally change 
the atmosphere quickly in comparison with the large scale 
atmospheric changes). Applying it to the troposphere 
where most aviation traffic exists sometimes gives unac­
ceptable results because additional nonlinear effects can 
sometimes create wave turbulence (Laprise 1993)1. 

This ~ paper explains the McFarlanelBacmeister 
method in forecaster-friendly terms and shows how a 
forecaster can subjectively assess the mountain wave tur­
bulence potential on atmospheric soundings. Included 
are some conditions in which the primary technique fails 
and ways to apply additional methodology to overcome 
the failures. The MWAVE algorithm implements the pre­
sented formulae to compute aircraft turbulence potential 
from numerical forecast model grids. 

2. The Inverse Froude Number as a Non-dimensional 
Wave Amplitude 

Smith (1979) and Durran (1990) provide excellent 
source reading for those interested in the general topic of 
mountain waves. It is not the intent here to provide rig­
orous mathematical details concerning mountain wave 
dynamics. The equations introduced in this paper have 
been derived in the referenced material. These formulae 
can describe characteristics of breaking waves that are 
responsible for the turbulence that aircraft encounter 
(Wurtele et al, 1993). 

The basic concepts needed to understand mountain 
wave phenomena use linear theory of hydrostatic gravity 
waves as a foundation. This theory is restricted to waves 
with small amplitudes relative to the background flow. As 
a first approximation, it has provided qualitative ideas 
which allow general statements to be made about moun­
tain waves (Smith 1977). Unfortunately, breaking moun­
tain waves are nonlinear. The nonlinear effects control 
the eventual characteristics of the wave. Although linear 
theory is not valid for breaking waves, it can be used to 
diagnose the conditions when wave breaking will occur 
(Laprise 1993). 

A number that measures the nonlinearity of the 
mountain wave in uniform stability and wind with height 
is Nhl U, where h is the height of a symmetric mountain 
from base to peak over which the air flows, and U is the 
wind speed. This number is a non-dimensional inverse 
Froude number and will be designated as ft for conve­
nience. When ft > 1, then the wave becomes nonlinear; it 
is unstable and breaks (Smith 1977). Turbulence produc­
tion with mountain waves actually occurs with n values 
lower than one. Miles and Huppert (1969) found that tur­
bulence begins when ft > 0.85, and Smith (1977) derived 
a wave breaking threshold of 0.74 using second order per­
turbation theory. 

1 Section 6 in this paper discusses two of the most common non­
linear effects. 
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Fig. 2. Numerical simulations of flow past a circular bell-shaped 
mountain with NhiU = .045. a) Flow in the x-z plane. b) Flow in the 
x-y plane. (Units in km) (From Smolarkiewitz and Rotunno 1989) 

Obviously, real atmospheres have variable stabilities 
and winds with height. Smith (1977) and McFarlane 
(1987) showed how to account for these variables by cal­
culating a local non-dimensional amplitude number, a: 

ci = Nzh (NoUoPO )~ 
~ ~~~ 00 

where p is the air density, the zero subscripts indicate 
evaluation at ground level, and the z subscripts indicate 
the mean evaluation in any layer aloft above sea level. 
This number, a, indicates how the initial wave ampli­
tude, ft, changes with height as it propagates upward. 
Wave breaking thresholds are identical to those of ft, i.e. 
when a is greater than one2

• 

Forecasters should take the time to understand the 
effects of the changes in stability, wind speed, and densi­
ty with height on wave breaking potential. Layers in 
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Fig. 3. Same as Fig. 2 except Nh/U = 4.5. 

which the stability is high and/or the wind speed is low 
compare more favorably for wave breaking. Breaking 
potential also increases high in the atmosphere because 
of the density decrease. Wave breaking is relatively fre­
quent in the stratosphere above mountains because of 
the high stability, slow winds, and low density. The less 
frequent occurrences of wave breaking in the troposphere 
challenge the forecaster. 

3. Mountain Height 

The non-dimensional amplitude, a, is also proportion­
al to the mountain height and is assumed to be symmet-

2 The actual a threshold for turbulence depends on the environ­
mental Richardson number. See Appendix A. Turbulence will 
begin with a > 0.85 in most instances. 
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Fig.4. Same as Fig. 2 except Nh/U = 1.5 

rically-shaped above a flat terrain. The higher the moun­
tain is, the greater the chances for wave breaking aloft. 
Reality is more complicated because real mountains are 
not symmetrical, nor is the adjacent terrain flat. 

Asymmetry can enhance or diminish a mountain wave 
(Smith 1977; Lilly and Klemp 1979). Figure 1a from Lilly 
and Klemp shows a simulated wave that forms from flow 
over a symmetrical mountain. In Fig. 1b, the lee portion 
of the mountain is steeper than the windward portion. 
The wave amplitude that ensues is higher than that for 
the equally high symmetric mountain. Figure 1c shows a 
much more shallow wave when the mountain has little 
downslope steepness. Thus, the downslope steepness is a 
major influence. Kim and Arakawa (1995) experimented 
with a number of simple, idealized mountain shapes and 
confirmed that the downslope steepness has the greatest 
effect on the wave amplitude. 

Intuitively, there exists a symmetric mountain with a 
height such that the same wave amplitude will occur as 
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over a real mountain. The problem becomes how to esti­
mate this equivalent symmetric mountain height. One 
simple solution is to look on a topographic chart in the 
region of interest. The downslope elevation change in the 
direction of the wind often is a good guess at h. Most 
mountains have a significant downslope only in one 
direction, so a forecaster can eliminate many situations 
whenever the wind direction is unfavorable. 

What happens when the stability near the ground is 
very high and the flow is weak? Then the flow might not 
be able to go over the mountain. Smolarkiewicz and 
RotuIino (1989) asked the same question in a three­
dimensional numerical simulation of flow past an isolat­
ed mountain. In Fig. 2, with low It (low stability and/or 
high wind speed), air parcels flow over the mountain. 
With high It, as in Fig. 3, a condition under which one 
expects that air parcels would have difficulty flowing over 
the mountain, the air indeed flows around the mountain. 
The high-It flow is similar to two-dimensional potential 
flow past an obstacle. With moderately high It (Fig. 4), 
part of the flow goes over the mountain, and part flows 
around. There is an elevation, called the effective height 
(he/f ~ h), below which the wind is stagnated and flows 
around the mountain, while the wind above flows over 
that mountain. This blocking effect occurs even if the 
mountain were infinitely long and perpendicular to the 
flow so that the flow would be two-dimensional (Smith 
1990). 

4. Wave Steepening and Breaking 

Smith (1977) and McFarlane (1987) showed that 
determining whether wave steepening will occur in any 
atmospheric layer above a mountain is a matter of exam­
ining the vertical structure of a. An experienced forecast­
er will be able to qualitatively estimate a from a sound­
ing plot in an analogous manner to thunderstorm poten­
tial analysis. Layers with stable lapse rates and slow 
wind speeds are favorable for wave breaking, but must be 
analyzed while considering the mountain height. The 
mountain height is analogous to the lifted parcel. That is, 
all other factors being equal, the higher the mountain, 
the larger the wave amplitude, and the more likely wave 
breaking will occur in a layer with a given lapse rate and 
wind speed. Computing a is more enlightening and is a 
matter of performing an appropriate sounding analysis 
much like one would compute convective available poten­
tial energy (CAPE). 

An atmospheric level at which any gravity wave's hor­
izontal velocity becomes equal to the wind flow is called a 
"critical level." At a critical level, all of the wave's energy 
is absorbed so the wave cannot propagate vertically. 
Instead, the wave energy is converted to turbulence as 
the wave approaches it (Geller et al. 1975; McFarlane 
1987). For a mountain wave, a critical level is whenever 
Uz = 0 since a mountain wave's horizontal velocity is zero 
- the mountain cannot move. Examining Eq. 2, if Uz = 0, 
the non-dimensional amplitude, a, becomes infinite. As 
Uz --+ 0, there must be a level at which a > 1. Therefore, 
between this level and the critical level, wave breaking is 
causing turbulence. Above a critical level there is no tur­
bulence because a = O. 
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Even if there were no true critical level in the wind 
speed profile, any layer in which wave steepening is 
high enough (Uz small enough) will be a turbulent layer. 
This is called ''wave saturation". When waves saturate, 
wave energy is converted to turbulence, so wave energy 
decreases. This will reduce the turbulence in layers aloft 
if atmospheric conditions remain constant. McFarlane 
(1987) showed that wave saturation can be parameter­
ized by reducing a in layers aloft as visualized in Fig. 5. 
Starting at the mountain top and working upward, each 
layer is examined for az > as, where, initially at the 
mountain top, as = 1. If az > as, then as = az in the layers 
aloft. The non-dimensional amplitudes are reduced by 
dividing by the new as. In Fig. 5, az > 1 beginning at Z1 
and reaches a local maximum at Z2. For levels above Z2, 
as = a2. Between Z2 and Z3, az! a2 < 1, so in this layer the 
wave is not saturated. At Z3, az / a2 > 1, and the wave 
breaks once again, but a has been attenuated. One can 
easily see that at a true critical level, as = 00 and a = 0 in 
all layers aloft. 

In Eq. 2, Uz is the wind speed without regard to its 
direction. Some have considered only the component of 
the wind aloft along the low-level wind direction 
(McFarlane 1987). However, in three-dimensional flow, a 
mountain wave is refracted horizontally at azimuths dif­
ferent from the original low-level wind direction (Smith 
1987). As it is refracted, some of the wave energy is 
absorbed by the turning wind and is not available for 
wave breaking (Shutts 1995; Broad 1995). If the wind 
direction changes by 90 degrees or more, all of the ener­
gy is absorbed. 

To summarize, mountain waves will steepen or flatten 
depending on the non-dimensional amplitude, a. 
Whenever a > 1, wave breaking will occur. However, tur­
bulence from wave steepening can occur with a non­
dimensional amplitude less than one (see Appendix A). 
Therefore, in order to analyze a mountain wave's turbu­
lence producing potential in any atmosphere, one must 
examine a vertical profile of a, as defined by Eq. 2. 

5. Wave Drag 

Wave breaking can occur in many atmospheric condi­
tions. However, analysis of wave breaking using a only 
yields a yes/no answer for turbulence. There is no infor­
mation about the intensity of the wave breaking. In other 
words, under certain conditions wave breaking may 
result in very light turbulence, while under other condi­
tions wave breaking may result in severe or extreme tur­
bulence. 

One quantity that measures the total mountain wave 
energy per unit volume is the exchange of momentum 
between the atmosphere and the mountain (Eliassen and 
Palm 1960). Hoinka (1985a) showed that, in time, the 
momentum flux becomes equal to the stress that the 
mountain exerts on the atmosphere. The stress is mea­
sured by the pressure difference between the windward 
and leeward sides of the mountain along a streamline.3 

This difference is called wave drag. Linear mountain 
wave drag for a bell-shaped mountain with constant sta­
bility (N) and wind (U) aloft, DL, is given by Miles and 
Huppert (1969) as 

WAVE BREAKING 
REGIONS 

I 2 a-
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Fig. 5. Schematic vertical structure of the non-dimensional ampli­
tude (a) illustrating layers of wave saturation. (From McFarlane 
1987) 

(3) 

This equation yields answers in pressure units. The 
momentum flux, and therefore the linear wave drag, in 
any layer aloft is equal to that at the surface through 
the Eliassen-Palm (1960) theorem assuming no 
sources or sinks of wave energy exist aloft. This means 
that DL in any layer may be evaluated from surface 
values. 

Equation 3 is the formula to compute the linear 
wave drag of a mountain wave. However, malignant 
mountain waves that concern aviation are nonlinear. 
Wave drag of nonlinear mountain waves in numerical 
simulation models are as much as twenty times the 
linear value (Peltier and Clark 1979).4 Miles and 
Huppert (1969) derived formulae from which nonlin­
ear amplification can be computed. The formula for a 
bell-shaped mountain is 

(4) 

Aircraft often ride a mountain wave's strong up-and­
downdrafts with little turbulence. Since the wave drag 

3 At many forecast offices one of the local rules-of-thumb for moun­
tain wave identification is the sea level pressure difference 
between two stations on opposite sides of the mountain. 

4 The nonlinear amplification of mountain waves computed in 
numerical models should be taken as ballpark figures since there 
is some variance from model to model for the same case studies. 
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Fig. 6. Schematic diagram of the idealized hydraulic jump-like flow 
configuration. A critical streamline at level H divides with the lower 
branch descending rapidly. The zone between the split streamlines 
is turbulent. The streamline recovers back to level H in hydraulic 
jump-like fashion. (Adapted from Smith 1985) 

measures the wave's intensity, these observations prob­
ably occur when the wave drag is high but the wave 
steepening potential is low. Therefore, it is the combina­
tion of high wave drag and high wave steepening poten­
tial that is the serious aviation problem. This paper 
defines the ''breaking wave drag" as the wave drag at 
levels whenever the wave steepening is large enough to 
produce turbulence. 

6. Nonlinear Enhancements 

a. Hydraulic jump-like phenomena 

Smith (1985), Durran (1986), Smith and Sun (1987), 
and Durran and Klemp (1987) have made an analogy of 
a mountain wave being like an internal hydraulic jump. 
In shallow water theory, when a more dense fluid is flow­
ing in a channel under a less dense fluid but over an 
object, if the flow speed and object height are just right, a 
hydraulic jump at the two-fluid interface will occur. The 
interested reader in hydraulic jumps can study any fluid 
mechanics textbook such as Shames (1962). 

Durran (1990) explains how this process works in the 
atmosphere. In the free atmosphere there are no density 
interfaces such as the water-air interface that typically 
produce true hydraulic jumps. Nevertheless, an increase in 
a with height can induce hydraulic jump-like behavior in 
an atmosphere forced to flow over a mountain. Smith's 
papers (1985, 1987) provide substantial theory for this 
process. A streamline splits at some level H upstream from 
the mountain with the lower branch descending rapidly 
(Fig. 6), and the flow becomes much like a hydraulic jump. 
What level is the level-H? It may be a level of high stabili­
ty (Durran 1986) or a near critical level (Smith 1987). In 
other words, the level-H is where a is a maximum. 
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Turbulence in hydraulic jump-like flow happens in 
two ways. First, as the dividing streamline descends, the 
wind speed along the downslope increases as all of the 
flow below H is funneled below the dividing streamline. 
This increases the wind shear both above and below the 
speed maximum. Second, the layer between the dividing 
streamline and the undisturbed flow above it is convec­
tively turbulent, i.e. the potential temperature in the 
layer locally decreases with height. Smith (1987) 
observed turbulence below level-H to be that which 
would be expected at level-H due to wave breaking. 

b. Wave reflection and resonance 

Another major nonlinear influence on mountain waves 
is reflection and the possible resonance interaction of the 
reflected wave with the original wave. Wave reflection 
occurs when the refractive index changes rapidly as the 
wave propagates through it. The refractive index for 
mountain waves is the Scorer (1949) parameter (NIU in 
its simplest form). Note that the simple Scorer parameter 
is roughly proportional to a by h. Wave resonance hap­
pens when the reflected wave constructively interferes 
with the original wave, creating a standing wave of 
greater amplitude. This occurs when the level of refrac­
tive index is three-fourths the mountain vertical wave­
length (and at [n+.75]A, n = 1,2,3, ... ) (Peltier and Clark 
1979). The vertical wavelength can be computed simply 
by A = 2'ITUoINo. Notice that A does not depend on the 
mountain height. 

If aup is the local non-dimensional amplitude of the 
upward-propagating wave from Eq. 2 and acrown = r aup, 
where r is the fraction of the upward wave amplitude 
reflection downward from the optimum level (0.751..)5, 
then arefl = aup + acrown. Waves constructively interfere 
with each other to create wave steepening greater than 
either aup or acrown. 

7. Examples 

Figure 7 a shows a sounding from Lander, Wyoming, at 
0000 UTC 4 November 1993. The mountains of concern 
are the Bighorns in north central Wyoming, about 200 km 
to the northeast. These mountains are very symmetrical 
along roughly a north-south axis. From topographic maps, 
the average height, h, above the surrounding flat terrain 
is about 1150 m. In Fig. 7b notice the sharp increase in 
stability above 200 mb with an accompanying decrease in 
wind speed. For this profile (Fig. 7c) a remains well below 
0.85 until it rapidly increases to greater than that value 
above 200 mb. The mountain wave generated at the 
mountain top near 700 mb would not be turbulent until 
above 200 mb. This case was chosen because of an aircraft 
report of moderate to severe turbulence at 41,000 feet 
(FL410), about 180 mb, that occurred about 3 hours earli­
er than when this sounding was taken. 

The next example in Fig. 8 illustrates that wind 
decreases with height can also increase a to breaking val­
ues. The sounding was taken at San Diego, California, on 

5 See Appendix B on how to compute r. 
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Fig.7. Wave steepening analysis for the 0000 UTC 4 November 1993, Lander, Wyoming, sounding. a) The skew-T/log-p diagram. b) pro­
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Fig.8. Same as Fig. 7 for the 1200 UTC 13 January 1994, San Diego, California, sounding. 

1200 UTC 13 January 1994. The height of the mountain 
located 75 km northeast of San Diego is 575 m. This 
sounding shows wind speeds decreasing to less than 5 
m S·l at 700 mb and to near zero at 400 mb. The 400 mb 
level is almost a critical level. Light turbulence was 
reported at 700 mb and below. 

Figure 9 shows an example of where hydraulic 
jump-like enhancement probably occurred. The case is 
of a bora, a downslope wind typical in Croatia, on 6 
March 1982 from Smith (1987). The mountain height 
is 900 m. The higher stability and decreasing winds at 
700 mb combined to maximize a at that level, and if all 
a at levels below 700 mb are adjusted upward to the 
maximum a (Fig. 9c), then the a-analysis would corre­
spond to the measured moderate turbulence at all lev-

els below 700 mb (Smith 1987). Not considering 
hydraulic jump-like phenomena only yields turbulence 
at 700 mb. 

The 11 January 1972 northern Colorado Front 
Range mountain wave is a good example of reflec­
tion/resonance. Figure 10 shows the data for this case. 
The mountain height was 1900 m. The three-quarter 
wavelength height (9609 m AGL) was about 160 mb 
where wave breaking was taking place, and aup(160) = 
2.082. Applying formulae detailed in Appendix B, 
at the half wavelength level (260 mb), aup(260) = 0.601. 
Therefore, r = aup(260)/ aup(160) = 0.304 and adown = 
raup(160) = 0.634. At 200 mb, aup(200) = 0.89, 
so arefl(200) = ( adown + aup [200]) = 1.524. Continuing 
downward, adding the reflected wave non-dimensional 
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Fig. 9. Same as Fig. 7 for the 1200 UTC 6 March 1982, Zagreb, Croatia, sounding. In c) the dashed line (<'ihyd) indicates the non-dimen­
sional amplitude after enhancement for hydraulic jump-like behavior. 
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Fig.10. Same as Fig. 7 for the 1200 UTC 11 January 1972, Denver, Colorado, sounding. In c) the dashed line (arefl) indicates the non­
dimensional amplitude after enhancement for reflectionlresonance. 

amplitude changes the wave analysis at all levels from 
non-breaking to breaking. This mountain wave is 
famous not only for its strength but also because it was 
well observed by research aircraft (Lilly 1978). The air­
craft encountered severe turbulence at every level 
within the mountain wave. Because of the "tuned" 
atmosphere, reflection/resonance caused a mountain 
wave that naturally breaks in the stratosphere to also 
break at lower levels. By not considering this nonlin­
ear enhancement, the turbulence would have been 
badly diagnosed. These special conditions appear to be 
rare. In a database of 17 mountain wave cases 
described in the next section (Table 1), only two were 
tuned, and only this one shows this magnitude of 
strength. 

These examples show that aircraft turbulence is 
indeed associated with wave breaking. As noted in 
Section 5, it is the breaking wave drag that should give 
the turbulence intensity. Figure 11 shows the breaking 
wave drag profiles for each of the above examples, and 
the following section details the breaking wave drag/tur­
bulence intensity relationship. 

8. Validation 

Breaking wave drag values computed with the formu­
lae outlined above were validated in two databases. First, 
one hundred aircraft estimates of turbulence intensity at 
various altitudes for 17 different mountain waves were 
compared with breaking wave drag computations at 

"'1 
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Table 1. List of mountain wave cases used to validate the 
mountain wave breaking wave drag computations with turbu­
lence from pilot reports. Research aircraft, as documented in the 
referenced papers, observed the turbulence in the first nine 
cases. Eight additional cases of known or suspected mountain 
waves with routine pilot reports supplement the database. 

17 February 1970 Lilly and Kennedy (1973) 

11 January 1972 Lilly (1978) 

6 March 1982 Smith (1987) 

7 March 1982 

22 March 1982 

23 March 1982 

25 March 1982 

15 April 1982 

8 November 1982 

3 November 1993 

2 December 1993 

3 December 1993 

3 December 1993 

15 December 1993 

13 January 1994 

24 February 1994 

27 October 1996 

Smith (1987) 

Smith (1987) 

Hoinka (1984) 

Smith (1987) 

Smith (1987) 

Hoinka (1985b) 

north central Wyoming 

south Wyoming/north Colorado 

near Phoenix, Arizona 

near Burlington, Vermont 

near Las Vegas, Nevada 

near San Diego, California 

near Denver, Colorado 

near Tahoe Valley, California 

Table 2. A 6 x 5 contingency table of turbulence intensity 
reports with ranges of breaking wave drag from the Table 1 
cases. The Chi-squared test statistic for this table is 136.02 
which compares with 45.32 at the .999 level with 20 degrees of 
freedom. 

Breaking Wave Drag (mb) 

Intensity 0.0 0.0- 2.0- 4.0- > 6.0 Total 
2.0 4.0 6.0 

Smooth 17 5 0 0 0 22 

Light 7 16 0 0 24 

Light-Moderate 2 11 0 15 

Moderate 2 8 2 0 13 

Moderate-Severe 0 2 4 5 0 11 

Severe 0 0 4 10 15 

Total 28 42 9 11 10 100 

those altitudes. Table 1 lists the cases. Research aircraft 
observed the first nine of the waves, and eight additional 
known or suspected waves with routine pilot reports sup­
plement the database. These seventeen cases represent 
the entire spectrum of wave intensities ranging from very 
light to very strong. 

The maximum reported turbulence intensity at 
each 50 mb pressure level within 6 hours ofthe sound­
ing time were arranged in a 6 x 5 contingency table 
with ranges of breaking wave drag computed from 
nearby soundings (Table 2). Only one wave had turbu­
lence reported at all levels. More typical is turbulence 
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Table 3. Critical Success Indices for breaking wave drag com­
puted from Table 1 cases with variant thresholds for turbulence 
intensity. Underlined is the maximum for each turbulence inten­
sity. To interpret the table, whenever the breaking wave drag is 
greater than the underlined threshold, the expected turbulence 
intensity is at least as high as the column-labeled intensity. 

Wave drag (mb) Light Lgt-Mod Moderate Mod-Sev Severe 

0.0 .ao.z .671 

0.5 .735 .635 

1.0 .725 &52 
1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

.589 

.518 

.447 

.516 

..6.14 
.591 

.545 

.719 

.766 

.750 

.679 .636 

.667 

:J22.. 
.706 

.667 

Table 4. Aircraft turbulence report intensities gathered from 
7 December 1997 to 6 February 1998 located within 2 degrees 
of40N 106W (near Denver, Colorado) and 34N 118W (near Los 
Angeles, California) compared with the breaking wave drag 
computed from soundings interpolated from the Rapid Update 
Cycle numerical model using the MWAVE algorithm. POD is the 
Probability of Detection and FAR is the False Alarm Rate at the 
breaking wave drag thresholds recommended in Table 3. 

DENVER 

breaking wave drag (mb) 0 >0 

SMOOTH 97 19 POD = 97/233 = .42 

> SMOOTH 136 172 FAR = 19/116 = .16 

breaking wave drag (mb) <2 ~2 

<MODERATE 228 11 POD = 27/185 = .15 

~MODERATE 158 27 FAR = 11/38 = .29 

LOS ANGELES 

breaking wave drag (mb) 0 >0 

SMOOTH 63 5 POD = 63/146 = .43 

> SMOOTH 83 76 FAR = 5/68 = .07 

breaking wave drag (mb) <2 ~2 

<MODERATE 119 2 POD = 23/106 = .22 

~MODERATE 83 23 FAR = 2125 = .08 

at some levels and no turbulence at others. The diago­
nal distribution of reports in the table suggests that 
breaking wave drag is very much related to turbulence 
intensity. The Chi-Square test statistic for dependence 
of the data (Conover 1971) in this table is 136.02, 

u. 
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Fig. 11. Breaking wave drag profile for a) the 4 November 1993 sounding in Fig_ 7, b) the 13 January 1994 sounding in Fig_ 8, c) the 6 March 
1982 sounding in Fig. 9, and d) the 11 January 1972 sounding in Fig. 10. 

which compares with a value of 45.32 for a .999 signif­
icance with 20 degrees of freedom which confirms the 
relationship. 

What thresholds can a forecaster use to determine 
when turbulence of a certain intensity will begin? The 
large contingency table was reduced to various 2 x 2 con­
tingency tables to discover these thresholds. The Critical 
Success Index in Table 3 maximizes at higher wave drag 
for each increase in turbulence intensity. 

In the second database, all aircraft turbulence 
reports located within 2 degrees of 40N 106W (near 
Denver, Colorado) and 34N 118W (near Los Angeles, 
California) were gathered from 7 December 1997 to 6 

February 1998. The intensities were compared with 
the breaking wave drag computed from soundings 
interpolated from the Rapid Update Cycle numerical 
model to a quarter degree grid using the MWA VE algo­
rithm (next section). Table 4 shows various 2 x 2 con­
tingency tables for this data. Although the Probability 
of Detection (POD) is rather low, mountain waves are 
just one turbulence source, and other turbulence 
sources, such as boundary layer or clear air turbu-
1ence, probably account for a substantial percentage of 
the misses. The low False Alarm Ratio (FAR) for the 
various thresholds indicates that the breaking wave 
drag diagnostics are reliable. 
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961027/2100VOOO 700 : 725 ME Rue BREAKING PRESSURE DRAG (rub) 

Fig. 12. MWAVE breaking wave drag diagnosis over central California from the Rapid Update Cycle (RUC) numerical model run at 2100 
UTC 27 October 1996. The weather stations at Tahoe Valley (TVL) and Sacramento (SAC), both in California, are located. Units of breaking 
pressure drag are mb. Background map is the terrain elevation. 

9. The MWAVE Algorithm 

Durran (1990) expressed that a forecaster can do no 
better than to examine atmospheric soundings for match­
ing characteristics with those in mountain wave breaking 
climatological studies. This may work for local forecasters 
that only need to be informed about mountain waves in 
their small areas of responsibility but only if a similar 
case has occurred in the past. Of course, someone has to 
create the climatoligical study for each local area. This 
approach works poorly since the atmospheric details 
causing mountain waves are sometimes different than 
those observed in the climatology. It is better to take the 
dynamical approach as outlined in Sections 2-6. Then 
there are the forecasters who have large areas of respon­
sibility and must issue advisories anywhere when condi­
tions are favorable. They need guidance in all mountain­
ous areas, not just those that have been researched. 

The MWAVE algorithm applies the wave analysis for­
mulae to numerical model forecast data to compute break­
ing wave drag over any mountainous terrain. This section 
describes the special developmental considerations. 

The mountain height, h, used in the formulae for wave 
breaking and wave drag assumes that the mountain is an 
isolated bell-shaped symmetric mountain ridge above 
level terrain. Since actual terrain is not ideally-shaped, 

the goal is to obtain a representative "mountain height" 
that is equivalent to the "ideal" height so one can input it 
into the "ideal" equations. 

Section 3 outlines much of the strategy toward attain­
ing representative mountain heights. In addition, Kim 
and Arakawa (1995) found that the mountain's pointed­
ness, as measured by its concavity, also influenced the 
wave drag; the more upwardly-pointed the mountain, the 
higher the drag. Another way to visualize this effect is 
that narrow mountains have more wave drag than wider 
mountains with identical heights. 

Guided by Kim and Arakawa (1995), a worldwide ter­
rain database at 1/8 degree latitude/longitude resolution 
(about 12 km) provides enough elevation data to compute 
asymmetry and concavity. Recognizing that for any given 
case, the mountain top wind direction plays an important 
role in determining h, asymmetry and concavity were 
computed along both the x- and y-directions at one quar­
ter degree resolution (about 25 km). An "asymmetry 
height" at any grid point, i, is defined as the negative ele­
vation change along the positive x(y)-direction or ha = 
-(Zi+l-Zi.l), where the subscriptedz is the mean elevation 
along the x(y)-direction at each grid point at the 
one-quarter degree resolution. A "concavity height" is 
defined as the negative curvature along the positive 
x(y)-direction or he = -~i+l + Zi·l- 2zi). The simple sum (ha + 
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Fig. 13. Vertical profile of MWAVE input and output at 39N 120.5W 
at 2100 UTC 27 October 1996, the point between TVL and SAC 
where MWAVE breaking pressure drag was maximum. Light gray 
is the breaking pressure drag (abscissa on bottom). The breaking 
wave drag goes to zero just below the 600 mb level and returns to 
positive about 250 mb. Medium gray is the wind speed; dark gray 
is the stability (abscissa on top). The wind direction at each level is 
indicated in the series of vectors to the right of the profile. Wind 
directions are primarily northeasterly. 

he), depending on wind direction (see below), gives very good 
"mountain heights." The quarter degree resolution corre­
sponds well with a 10 km half-width mountain on which 
most of the mountain wave research has been based. 

The results are five fixed grids of terrain statistics at 
one quarter degree latitude/longitude resolution. The 
first is a grid of the mean elevation at each grid point. 
There are two grids of asymmetric heights, one each in 
the x- and y-directions, and two similar grids of concavi­
ty heights. The terrain input grids only need to be com­
puted once. 

MWAVE produces results for the points on the fixed 
one quarter degree resolution grids. Therefore, the model 
grids need to be interpolated to the terrain grid. This is 
an important step for two reasons. First, the wind direc­
tion determines the asymmetry height. What is positive 
asymmetry for one wind direction is negative asymmetry 
for the opposite direction. Second, model grid resolutions 
vary from model to model. If MWAVE were computed on 
a model's grid, then the important terrain statistics 
would have to be computed for every model on which one 
wanted to run MWAVE. Furthermore, when a model's 
resolution changes, as they often do, one would have to 
recompute the terrain statistics. 

Automated calculation of h on the terrain grid is a 
three-step process. First, the first pressure level above 
the sum of the terrain elevation (Zi) and the asymmetry 
height (ha ) becomes the "mountain top." The stability and 
horizontal wind in that layer are the conditions over the 
"mountain" at that point. Second, the mountain height, h, 
is computed using the following formula: 

National Weather Digest 

(5) 

where the second subscripts indicate ha and he in the 
x(y)-direction, u(v) is the x(y)-component of the mountain 
top wind, and V is the mountain top vector wind. Note 
that the concavity height contribution along the x(y)­
direction is the same whether u(v) is positive or negative. 
If h < 0, then the height is set to zero. This formula yields 
large moUhtain ''heights'' slightly downwind from the 
actual mountain peaks, the location where mountain 
waves typically are the strongest. 

Third, the height is adjusted downward for blocking by 
a formula from Rottman and Smith (1989) 

h =h(0.985) 
eff ho ho = Noh> 0.985 

Uo 
(6) 

where No is the stability and Uo is the wind speed both at 
the mountain top. 

Once MWAVE computes the equivalent mountain 
heights and interpolates the model soundings to each of 
its grid points, it applies the equations outlined in 
Sections 2 through 6. Appendix B describes the process 
step-by-step. MWAVE output grids of breaking wave drag 
in horizontal layers which, when mapped, readily show 
where mountain waves may cause turbulence. Figure 12 
is an example in which MWAVE diagnosed high breaking 
wave drag from the Rapid Update Cycle model soundings 
over central California on 27 October 1996. There were 
seven pilot reports of greater than moderate turbulence 
in the six hours from 1800 UTC to 0000 UTC along the 
Tahoe Valley (TVL) - Sacramento (SAC) corridor below 
12,000 feet (FL120). There were no pilot reports further 
to the southeast where the maximum was located. Figure 
13 shows an MWAVE profile at the point along the corri­
dor where breaking wave drag was maximized. The fig­
ure also includes profiles of wind speed and stability. Note 
that the 650 mb level (about FL120) was the highest level 
at which MWAVE had a 3 mb breaking wave drag. There 
were no pilot reports from above the 250 mb level to ver­
ify the positive breaking wave drag there. 

10. Conclusions 

Environmental stability and wind control turbu­
lence production in mountain waves. The relationship 
between the two can be confusing. On the one hand, 
wave steepening, which measures if a wave is turbu­
lent or not, is a function of stability divided by wind 
speed and is computed in all layers of a sounding. On 
the other hand, wave energy, which can be converted to 
turbulence, is a function of stability times wind speed 
and is computed only at the mountain top. It is con­
stant as the wave propagates upward unless reduced 
by wave saturation or increased by nonlinear effects. It 
is a rather unique condition under which a mountain 
wave can produce the strongest turbulence; the winds 
must be strong in a stable layer at mountain top level 
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and diminish with height and/or stability must 
increase with height. Once a forecaster understands 
this relationship, subjectively recognizing mountain 
wave turbulent situations is not difficult. 

However, if a forecaster must forecast aviation turbu­
lence for large mountainous areas or if quantitative infor­
mation is desired, then the sounding data must be 
processed. The MWAVE algorithm, described in Section 
9, processes numerical model forecast soundings with the 
equations presented in earlier sections. To summarize, 
the representative mountain height, h, at a fixed terrain 
grid point is computed automatically from the mountain 
top wind direction and any diagnosed blocking. MW A VE 
examines wave breaking potential by calculating a local 
non-dimensional amplitude, considering wave satura­
tion. Hydraulic jump-like behavior and reflection/reso­
nance may enhance the initially computed a. The wave 
drag in any layer is the linear drag calculated at the 
mountain top. Finally; MW AVE computes a breaking 
wave drag which is the nonlinear wave drag of breaking 
waves and is a measure of the turbulence intensity poten­
tial. Appendix B outlines the MWAVE process step-by­
step. 

What are any weaknesses of this method for diag­
nosing turbulent mountain waves and the MWAVE 
algorithm? Several years experience suggests MWAVE 
can be very sensitive to the observations. Input sound­
ing data must be reasonably accurate and representa­
tive. Small errors in stability or wind speed can make 
large errors in a breaking drag calculation. 
Additionally, small differences in input mountain 
height can also make large differences if one of the 
nonlinear enhancements is important. MWAVE esti­
mates the average mountain height in a quarter 
degree grid square and is thus a compromise of many 
factors that may not work in all instances. 

Since mountain wave turbulence is not a topic taught 
in the typical university forecasting class, many opera­
tional meteorologists' knowledge is based on forecaster 
lore and fragmented information. Better forecasts should 
follow with the knowledge summarized in this study. 
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Appendix A 

A mountain wave may not be breaking Cd > 1) but still 
produce turbulence. This appendix describes why the 
non-dimensional amplitude threshold for positive break­
ing wave drag is often less than one. 

Mountain waves locally modifY the environmental 
Richardson number 

CAl) 
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(g is the acceleration of gravity; ® is the potential tem­
perature; and V is the wind velocity) as described in 
Dunkerton (1997): 

R· R' 1 +ticosqJ 
I = Iii ( \2 
mw • 1+ JRi:tisinqJ J (A2) 

where Rimw is the mountain wave modified Richardson 
number and <p is the mountain wave phase angle. The 
transcendental functional relationship of <p indicates that 
the mountain wave increases and decreases the environ­
mental Richardson number. Turbulence occurs when the 
modified Richardson number is less than 0.25 (Miles and 
Howard 1964). . 

Equation A2 may be evaluated whenever a and RiE 
are known. Recalling that waves break when a > 1, the 
numerator in Eq. A2 will be less than 0.25 (actually less 
than zero) when a> 1 for some TI/2 < <p < 3TI/2 (cos <p < 0). 
Thus, a portion of the wave, when breaking, will be tur­
bulent. However, the denominator in Eq. A2 may be suf­
ficiently large even when a < 1 for Rimw to be less than 
0.25. The lower the RiE, the lower the threshold for a for 
turbulence production. Figure A1 shows the approximate 
curve. 
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Fig. A1. Curve showing the approximate thresholds for environ­
mental Richardson number and non-dimensional amplitude (a < 1) 
for Rimw < 0.25. The curve was computed by iteratively evaluating 
Eq.A2. 

Appendix B 

This appendix describes the MWAVE process step-by­
step so the readers may implement MW AVE into their 
forecast operations. 

A preliminary task is to compute the terrain statis­
tics needed to input into MWAVE. The National Centers 
for Environmental Prediction provided the 1/8 degree 
latitude/longitude resolution (about 12 km) global ele­
vation database although most numerical modeling cen­
ters should have similar databases at equal or finer res­
olutions. Compute asymmetry and concavity ''height'' 
components along both the x- and y-directions. An 
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asymmetry height at any grid point, i, is defined as the 
negative elevation change along the positive x(y)-direc­
tion or ha = -(Zi+l - Zi.l), where the subscripted Z is the 
mean elevation along the x(y)-direction at each grid 
point. A concavity height is defined as the negative cur­
vature along the positive x(y)-direction or simply 
he = -(Zi+l + Zi·l - 2zi). The preliminary terrain grid reso­
lution may depend on the input database resolution. 
Experiments with various terrain resolutions showed 
problems with any resolution, but a one quarter degree 
resolution seemed to minimize them. This resolution 
corresponds with a 10 km half-width mountain on 
which most of the mountain wave research has been 
based. 

1. Interpolate the model grid to terrain grid 

MW AVE computes the breaking wave drag for the grid 
points on the fixed one quarter degree resolution grids. 
Therefore, the model grids need to be interpolated to the 
terrain grid. Interpolation algorithms are beyond the 
scope ofthis paper. 

2. Compute the equivalent mountain height 

Automated calculation of h on the terrain grid takes 
three steps. First, the first pressure level above the sum 
of the terrain elevation (Zi) and the asymmetry height 
(ha ) becomes the "mountain top level." This ensures that 
when the grid point is on a downslope, MWAVE uses the 
atmospheric conditions at the level of the nearby moun­
tain top. The stability and horizontal wind in the layer 
containing the mountain top are the conditions over the 
"mountain" at that point. 

. Second, the mountain height, h, is computed using the 
formula 

where the second subscripts indicate ha and he in the 
x(y)-direction, u(v) is the x(y)-component of the moun­
tain top wind and V is the mountain top vector wind. 
When the wind changes direction with height, MWAVE 
computes a different mountain height for each wind 
direction. MWAVE uses the wind direction at the first 
level which the sounding height is above the (Zi + ha ) 

height. This formula yields large mountain ''heights'' 
slightly downwind from the actual mountain peaks, the 
location where mountain waves typically are the 
strongest. 

Third, the height is adjusted downward for blocking by 
the formula 

h =h(0.985) 
<ff h 

o 
h Noh 5 0=->0.98 

Uo 

(B2) 

where No is the stability at the mountain top as mea­
sured by the Brunt-Viiisiilii frequency and Uo is the wind 
speed both at the mountain top. 

I 

I 

I 
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3. Compute wave breaking at levels above the 
mountain top 

The non-dimensional amplitude number, a, is the 
number which determines wave steepening, 

(B3) 

where p is the air density; the zero subscripts indicate 
evaluation at ground level, and the z subscripts indicate 
evaluation in any layer aloft above sea level. This num­
ber, a, indicates how the initial wave amplitude, fL, 
changes with height as j t propagates upward. 

One may adjust for moisture when conditions are sat­
urated by using the saturated equivalent potential tem­
perature instead of the potential temperature when com­
puting N (Durran and Klemp 1983). Since N will be 
smaller, most saturated conditions will reduce wave 
breaking, but saturated conditions at the mountain top 
may increase h by unblocking the flow. Examine its effect . 
on (B2). A higher h could increase the wave breaking 
potential aloft. 

As waves steepen high enough to become turbulent, 
wave energy is converted to turbulent energy, and the 
wave energy available for turbulence production in layers 
aloft is reduced. Referring to Fig. 5, whenever a increases 
to greater than one, in layers aloft, a is reduced by the 
maximum a below. 

To account for partial wave saturation due to the turn­
ing of the wind direction with height, the non-dimension­
al amplitude number is reduced by multiplying by 
cos2(ez - eo), where ez is the wind direction in any layer 
and eo is the wind direction at the mountain top (Shutts 
1995). If the veering or backing is greater than 90 
degrees, then a = O. 

4. Compute wave enhancements 

Wave steepening may be enhanced in the low levels as 
the wave encounters conditions favorable for hydraulic 
jump-like behavior. MWAVE searches for a maximum in 
a below the highest level at which Smith's (1985) theory 
supports hydraulic jump-like flow. Smith (1987) gives a 
formule for the highest level, Hn=;, as 

(B4) 

where 

(B5) 

At all levels below the an=; height, a = an=;. This 
accounts for the observed turbulence between the split 
streamlines and assumes the turbulence in the shear lay­
ers is just as strong. 

National Weather Digest 

The other major influence on mountain waves is reflec­
tion and the possible resonance interaction of the reflect­
ed waves with the original wave. From Eliassen and 
Palm (1960) MWAVE computes a reflection coefficient 

(B6) 

where the subscripts U and L indicate evaluation at an 
upper and a lower level. Reflection of mountain waves 
will occur when there is a-layering (vertical changes in a), 
and the stronger the layering, the more the reflection, If 
aL > au , then the reflection can lead to horizontal trapped 
lee waves because of the a decrease with height. If au > 
aL, then vertical waves are reflected. 

MW A VE computes a reflection/resonance enhance­
ment with the reflection coefficient (B6). First, it com­
putes the three-quarter vertical wavelength (A = 
2'ITUoINo) height (and 1.75A, 2.75, .. . etc., if necessary). 
The a computed at that level becomes the au in (B6). 
MW AVE arbitrarily uses the a at the half vertical wave­
length6 as aL. If au> aL , the reflection coefficient, r, gives 
the fraction of the upper level wave steepening that 
reflects downward, adown = rau (Smith 1977 and 
Weissbluth and Cotton 1989). Since wave amplitudes 
add, adown is added to aup in layers lower than the reflect­
ing level. 

5. Compute the breaking wave drag 

Linear mountain wave drag for a bell-shaped moun­
tain with constant stability and wind aloft, DL, is given by 
Miles and Huppert (1969) as 

1i 
D =--hpNU 

L 4 (B7) 

The linear wave drag, in any layer aloft is equal to that at 
the surface through the Eliassen-Palm (1960) theorem 
assuming no sources or sinks of wave energy exist aloft. 

Nonlinear effects from wave steepening increase the 
wave drag. From Miles and Huppert (1969), the formula 
for a bell-shaped mountain is 

(B8) 

Since it the combination of high wave breaking poten­
tial and high wave drag that is the serious problem for 
aviation, when a is high enough for turbulence to occur 
(Appendix A), the breaking wave drag (DB) is the wave 
drag computed from (B8). Otherwise DB = O. 

6 To the author's knowledge, there are no published references on 
how to choose the lower level. 


