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The use of look-up-tables (LUTs) to represent parame­
terizations within numerical weather prediction and 
other atmospheric models is presented. We discuss several 
approaches as to how the use ofLUTs can be optimized in 
order to retain the physical representation of the parame­
terization, yet be much more computationally efficient 
than the parent parameterization from which they are 
derived. 

trast, parameterizations, although partly based on fun­
damental concepts of physics, involve tunable coefficients 
and empirical functions. In atmospheric models, parame­
terizations are constructed, for example, for deep cumu­
lus convection, stratiform cloud and precipitation 
processes, subgrid-scale mixing, short- and longwave 
radiative fluxes, and land-surface interactions (see Pielke 
2002, Appendix B for summaries of the parameteriza­
tions used by a variety of numerical weather prediction 
and other atmospheric models). 

1. Introduction 

All atmospheric models are composed of a dynamical 
core, which represents advection, the pressure gradient 
force, and gravitational acceleration; and of a set of para­
meterizations that represent all other physical processes 
in the model. Only the dynamical core is based on funda­
mental physical concepts: For example, the pressure gra­
dient force does not involve tunable coefficients. In con-
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The computational costs of the parameterizations, 
however, are becoming much greater than for the dynam­
ical core of a model, as parameterizations introduce 
greater complexity. Majewski et al. (2002) report the com­
putational cost of different components of high-resolution 
global operational numerical weather prediction models. 
They show that parameterizations occupy 46.8% of the 
total when the radiation code was updated every 2 hours. 
If the radiation code (which represents 57.5% of the total 
parameterization cost) is updated on a more realistic 
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time scale, e.g., 10 minutes, this parameterization by 
itself would cost about 85% of the total computational 
time! In this paper, we outline a procedure to very signif­
icantly reduce this computational cost. Earlier discus­
sions of this subject are available from Matsui et al. 
(2004) and Chevallier et al. (1998). 

2. Methodology 

The goal of a parameterization is to mimic the physi­
cal process that it is designed to represent without 
requiring a detailed, comprehensive, high spatial and 
temporal resolution model. Since the parameterization 
itselfis an engineering module (i.e., it consists of empiri­
cal equations with tunable coefficients derived from 
observations and/or from a higher resolution model), the 
goal is to accurately represent the physics it is designed 
to simulate at a minimum of computational cost. The 
parameterization concept can be written as: 

Output (x) = T[Input(x),y] (1) 

where the dependent variables that need to be computed 
(the Output x), are obtained from the Input values x and 
the prescribed constants, y of the parameterization, 
through the transfer function, T, which is the parameter­
ization. The constants yare obtained from observations 
and/or a higher resolution model when the parameteri­
zation was created (such as through a fit to the observed 
data as a function of observed values of x). T can provide 
an instantaneous change (i.e., over a time step) or be 
inserted over a period of time, such as performed with the 
Fritsch-Chappell (1980) deep cumulus parameterization. 
This approach is also common in the remote-sensing com­
munity (e.g., Jin et al. 2004). Pielke (1984; pages 263-265) 
proposed this approach to parameterize the response of 
cumulus clouds to the larger-scale environment. 

The current paradigm is to exercise the parameteri­
zation, T, within the atmospheric model for each gridpoint 
during the period of model integration. 

However, there is another approach that can signifi­
cantly reduce the cost. The concept is to integrate the 
parameterization offline for the universe of x, where the 
number of values of x that is needed depends on the 
graining that is chosen. This approach can be described 
as a look-up-table (LUT). The LUT, expressed as a multi­
dimensional array or fitting function, provides the need­
ed value ofT. 

There has been an impediment to the use of the LUT 
technique. The universe of permutations ofx that are need­
ed produce an enormous number of values. Such large data 
arrays cannot be accommodated within the available CPU 
memory of any existing computer. The choice of the model­
ing community, therefore, has been to include the parame­
terizations within the atmospheric models and exercise 
them as the model integration proceeds. 

As an alternate approach, we propose the solution ofEq. 
(1) offline in order to construct a LUT (or its functiorial 
interpolation). The LUT is then applied in lieu of actually 
running the parent parameterization as the atmospheric 
model is integrated in time and space. There are several 
items that permit the feasibility of this approach: 
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• Existing parameterizations are exercised in l-D ver­
tical columns with the input values of x obtained 
from just one x-y grid point. This simplifies signifi­
cantly the number of calculations that must be per­
formed in creating the LUT. 

• Existing parameterizations include mathematical 
complexity which is not justified by the skill that it 
has in defining T. In other words, the dimensionali­
ty (i.e., as represented by its degrees of freedom) of 
the parameterization is much greater than warrant­
ed. This means the number of separate values of T 
can lfe much less than provided by the parent para­
meterization. The term graining can be used to 
describe the number of separate values. 

• The success of LUTs highly depends on the availabil­
ity of a large repository of the pre-computed values, 
and more critically, on fast, targeted retrieval of this 
information. Fortunately, those commercial search 
engines, such as Coogle and Yahoo, have already 
demonstrated the feasibility of such an approach. 
For example, Coogle presently can search an index 
database of over 8 billion web pages in under a sec­
ond for most user queries. Our proposed approach 
has the added advantage that the total information 
stored is much more compact, well structured, and 
much easier to index. 

3. Discussion 

The LUT-based approach is overviewed in the follow­
ing text. We segment the discussion into data storage and 
retrieval, methods to reduce the dimensionality of the 
approach, and the relationship between the original 
parameterization and the LUT-based approach. 

a) Data storage and retrieval 

To use the LUT-based approach to reproduce essential­
ly all of its values requires the organization and search for 
the correct LUT from perhaps billions of the available 
LUT values. To address the limitation of existing comput­
er memory, the minimum size (one case of input and out­
put values) of binary LUT can be stored in :files on the 
hard disk. To efficiently search the LUT for the required 
value ofT for each situation, a set ofthe input variables is 
converted into directory and :file names, and then the 
machine operating system (e.g., UNIX) can read the bina­
ry LUT nearly instantaneously with the given directory 
and :file name. This hard-disk, input-output approach is 
the type of procedure used by the business community to 
access specific values within vast data sets. 

There are many ways to store the LUT in order to 
enable fast retrievals such as hashing, distributed I/O 
storage, and distributed data bases. The hashing tech­
nique enables the mapping of a unique key to the LUT 
entry. Examples of methods of data retrievals that can be 
employed are parallel, asynchronous retrievals, a hard­
disk, input-output approach, and a multi-nonlinear fit­
ting approach usually called a neural network. 

An example of possible LUT storage and retrieval 
schemes is the hash table based data structure. A hash 
table (Corman et al. 1990) maps every LUT entry to a 
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unique integer, or an index, by using a hash function. The 
indexes are often used as the memory address of the 
stored LUT data, therefore the search efficiency is great­
ly increased to the order of 0(1). Hashing techniques are 
known to be fast lookup techniques compared to other 
common approaches such as binary or tertiary tree struc­
tures. Improvements to the hash table implementation of 
the LUT can be achieved by the use of a relational data­
base. For example, in a specific simulation, if certain 
entries ofthe LUT are accessed repeatedly; this informa­
tion can be used to weigh the LUT lookup, enabling faster 
turnaround times. Conceptually; this is similar to how the 
web search engines weighs and caches frequently 
accessed pages. 

When the storage sp~ce required for the LUT becomes 
too large to be handled on a single processor, the use of dis­
tributed I/O storage or distributed databases can be 
employed. A distributed I/O system with large, scalable 
storage space can be created by taking advantage of easi­
ly available and inexpensive commodity resources instead 
of using large, expensive, centralized storage systems. The 
large storage space available on a distributed I/O system 
can be used to create a fault-tolerant, fail-safe LUT stor­
age by the use of multiple data servers and data replica­
tion. Parallel, asynchronous LUT retrievals can also be 
used to improve the performance of the LUT approach. 

The above mentioned hard-disk, input-output 
approach, for example, enables the delta-four-stream Fu­
Liou radiation code (Fu and Liou 1992) (30 vertical layer, 
140 input, and 33 output) to run 443 times faster than 
the original code in the Sun-Blade-lOOO workstation 
(Dual CPU: 900 MHz frequency and 8 mb cash size) 
(Matsui et al. 2004). With this magnitude of speedup, the 
computational cost of the parameterization becomes neg­
ligible in comparison with that of the dynamic core. 

A multi-nonlinear fitting approach, usually called 
Neural Network, also enables the dramatic saving of 
computational time for longwave radiation codes 
(Chevallier et al. 1998). The Neural-network-based radi­
ation code was constructed from a line by line radiation 
model, achieves a speed that is 22 times faster, and yet, is 
a more accurate radiation code than the conventional 
band model (Chevallier et al. 1998). 

b) Methods to reduce the dimensionality of the approach 

With a parameterization, however, we do not require 
billions of data points in a LUT in order to realistically 
reproduce a parameterization of a specific process with 
the accuracy needed for use in an atmospheric model. To 
illustrate this point, the hyperspace of a transfer function 
T, and how slices through it can be applied to establish 
the needed resolution of a parameterization [the Louis 
surface flux parameterization (Louis 1979)] is discussed 
here (Lu 2004). The Louis surface flux scheme, although 
a simple parameterization, still requires considerable 
storage if used as an LUT. The surface heat flux, as cal­
culated from the Louis surface flux parameterization, is a 
function of the wind (u) and the potential temperature 
(theta) at a height, (z), the surface potential temperature 
(thetao), and the roughness length (zo). Figure 1 shows 
one slice through hyperspace where the surface heat flux 
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Fig. 1. Surface heat flux calculated from wind (u, m 5·') and 
potential temperature (theta, OK) at z = 1.0 m. The u is in domain 
of 0.05 to 2.05 m 5·' with an interval of 0.02. The domain of theta 
is 290-3100K and the interval is 0.2°K. The surface potential tem­
perature thetao = 3000K and the roughness length Zo = 0.1 m 
(from Lu 2004). 

varies with u and theta, while the other variables are 
fixed (z =1.0 m, thetao = 300°K, Zo = 0.1 m). The domain 
ofu is set from 0.05 to 2.05 m S·1 with an interval of 0.02 
m S·I, and the domain of theta is from 290 to 3100K with 
an interval of 0.2°K. This graining of the parameteriza­
tion (with 100 by 100 data points) indicates that this res­
olution is sufficient to capture the physically important 
variations that are represented by the parameterization 
for the variable space used in this example. Even extend­
ing the domains to more realistic ranges (e.g., 250 -
320°K, and 0.05 - 50 m S·I) with the same graining, the 
total number of calculations or data points would still be 
manageable (875,000 for the above ranges) 

In the context of a general parameterization, we do not 
need billions of data points in an LUT in order to realis­
tically parameterize a process for use in an atmospheric 
model. 

The dimensionality of the input space of the T opera­
tor can be further reduced from the number obtained by 
simply combining the number of variables with the num­
ber of discretization intervals. Such a large number of 
combinations results in a large number of physically 
meaningless inputs that result from the mathematical 
formulation used to construct a parameterization, rather 
than based on the data used to construct the parameter­
ization. No parameterization can justifY a dimensionali­
ty in the billions. 

We are applying the technique of Empirical 
Orthogonal Functions (EOF) to the parameterizations as 
one method to reduce the dimensionality to a physically 
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96 

justified level. The values for T are obtained by combin­
ing the output of the individual EOFs (Leoncini and 
Pielke 2005). A second technique that could reduce the 
dimensionality is cluster analysis, since it can group 
input variables that provide outputs within the error 
range of the parameterization. Thus, when a set of input 
variables is determined to belong to a particular cluster, 
the output associated with the cluster itself can be pro­
vided to the parent model without further computations. 

c) The relationship between the original parameterization 
and the LUT-based approach. 

The LUT approach described up to this point can be 
thought of as the co!pplement of carrying out all parame­
terization computations during model timesteps. It 
reduces model runtime computations to an absolute min­
imum and relies instead on efficient access of pre-com­
puted values from a very large database. The LUT 
approach also sacrifices some accuracy from the parent 
parameterization because it must approximate the para­
meter space with a finite number of data values, and 
interpolation methods between these data values does 
not capture the full complexity of the parameterization 
(which mayor may not have physical realism). 

However, there are levels of compromise between 
these two extremes that may provide an optimal combi­
nation of accuracy and efficiency between the full LUT 
and the full parameterization method. 

One form of compromise is possible for parameteriza­
tions of low dimensionality, such as the Louis surface 
layer parameterization, where parameter space can be 
adequately covered with relatively few data values (e.g., 
less than 1 million). Such a small LUT may be comput­
ed at model initialization time and stored in model arrays 
where access of table values is faster than from a disk. 

A more important compromise that is often possible is 
a hybrid approach where LUTs are constructed for sub­
sets of a full parameterization, particularly those that 
consume the most time. For example, LUTs have been 
used for years to store pre-computed rates of hydromete­
or collisions, melting, and nucleation in the RAMS micro­
physics parameterization (Walko et al. 1995), while the 
overall parameterization is computed in the convention­
al way. Schultz (1995) developed an explicit cloud physics 
parameterization for use in operational models which 
encompasses the hybrid LUT concept. These LUTs have 
only 2 or 3 dimensions and are thus easy to fill at high 
density for good accuracy. The speed of the overall 
scheme was increased several fold to the point where it 
consumes much less time than the model dynamics. 
While this speed does not match what might be obtained 
by constructing an LUT of the full microphysics parame­
terization, the accuracy is improved and the complexity of 
the LUT is reduced to the point that the hybrid approach 
is probably the most attractive. 

The hybrid LUT approach may be particularly attrac­
tive for a parameterization of very high dimensionality, 
such as a radiative transfer model representing, possibly, 
50 vertical levels. For example, it is probably an impossi­
ble task to pre-compute all possible combinations of moist 
and dry model levels that may occur. Thus, the full LUT 

National Weather Digest 

approach will be prone to incorrect heating and cooling 
rates at some model levels for a subset of situations if the 
LUT does not have fine enough graining of the range of 
combinations. A hybrid LUT approach could be designed 
to replace only certain time consuming calculations in the 
parameterization while keeping the computations 
involved in the specific vertical atmospheric profile with­
in the realm of the parameterization. 

There is an additional approach that can be applied 
once either a hybrid or complete LUT is constructed. 
Since the LUT is a parameterization itself, if new 
observations (or higher resolution model simulations) are 
obtained that would warrant the updating of the parent 
parameterization, that parameterization might be 
bypassed and the LUT itself adjusted. This will be a par­
ticularly straightforward approach to use when a func­
tional interpolation is applied to represent the LUT. 

4. Relevance to Superparameterizations 

It has been proposed (Grabowski 2001, Randall et al. 
2003) to embed a cloud-resolving model within a larger­
scale model in order to improve the accuracy of simulat­
ing cloud interactions with the larger-scale model. 
This has been called a "superparameterization". 
Superparameterization refers to using a 2-D or 3-D 
cloud-resolying model to simulate a process in place of a 
very simplified parameterization that has been common­
ly used in weather and climate models in order to keep 
the computational cost low. Superparameterization 
embedded, Multi-Modeling Frameworks (MMF) are 
recently under development at several institutions, and 
there are plans to create global cloud libraries which 
includes detailed mass and energy output from cloud 
resolving models. With the LUT-based approach, the 
superparameterization approach could be used much 
more efficiently since the simulations (e.g., the 3-D cloud 
model) are integrated offline, and the results are archived 
in a database for future retrieval. Column parameteriza­
tions, which are what is exclusively used now in atmos­
pheric models, only consider vertical processes in the 
parameterization. By using the LUT-based approach, the 
realism of the superparameterization is retained but 
without its enormous computational cost. Moreover, as 
long as data libraries are organized, the LUT approach 
can always be mapped back to the original parameteri­
zation; therefore, the LUT approach is not a ''black box" 
in that the reason for a particular output can be 
described from the original. 

An advantage of the superparameterization 
approach, in contrast with the column parameteriza­
tions, is that it can dynamically more directly interact 
with the parent model at each time step. However, 
there is an alternate method. Once T is selected from 
the suite of available off-line cloud-resolving simula­
tions, its values can be fed into the vertical profiles at 
the GCM gridpoint as they are produced (i.e., after each 
time step) for the lifetime of the cloud system for that 
particular value of T. This lifetime is determined for 
each specific set of GCM input variables from the life­
time that comes out of running the off-line cloud field 
model that is used to construct T. 
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This approach of inserting the cumulus cloud effect 
over time is adopted from the procedure used by Fritsch 
and Chappell (1980). Comparisons of the much more 
computationally efficient LUT approach with the use of 
the superparameterization methodology should be made. 
With the LUT approach, it should be computationally 
possible to utilize higher-resolution, 3-D cloud-resolving 
models, instead of relying on coarser-resolution, 2-D cloud 
resolving models with a resultant possible improvement 
in realism of the parameterization. A key aspect of real­
ism enabled by the LUT approach is the ability to repre­
sent the full spatial heterogeneity of the land surface, 
which is known to significantly impact the initiation, 
growth, and maintenance of convective clouds (e.g., 
Avissar and Liu, 1996);· 

5. Conclusions 

This paper introduces a new procedure to accurately 
and efficiently parameterize physical processes in 
numerical weather prediction models, and in other types 
of atmospheric models. The method, which we refer to as 
the LUT approach, utilizes data access and retrieval pro­
cedures, and methods to reduce the dimensionality of the 
original parameterization to create this method of model 
improvement. A major advantage of the LUT approach, 
for example, includes the ability to create more realiza­
tions in the creation of ensemble forecasts. As shown by 
Mullen and Buizza (2002) and Bright and Mullen (2002), 
such ensemble forecasts provide a particularly valuable 
way to improve forecasting skill. 

However, the LUT approach as a replacement for the 
standard form of model parameterizations requires 
development and application with a diversity of atmos­
pheric models at many different organizations. The 
input-output datasets library, such as cloud libraries, 
must be established and made accessible for the LUT 
constructions. 
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