
Abstract

An objective statistical system that generates short-
term probabilistic forecasts of convection (radar reflectivi-
ty ≥ 40 dBZ) solely from observational input is presented.
This prototype is tested for Oklahoma City (OKC) by using
several high-resolution regional datasets including 4-km
resolution WSR-88D radar data, 404 MHz profiler data,
and surface data from the Oklahoma mesonet. Data from
the traditional, 12-h radiosonde network are also includ-
ed. Antecedent observations (predictors) are correlated to
future convection observations at OKC (the predictand).
This procedure is repeated for 11 lead times between 6 and
360 min, inclusive, with each forecast equation containing
4-10 of the most powerful predictors.

Radar data provide the greatest contribution to skill,
particularly for lead times ≤ 60 min. Specifically, the
upstream percent areal coverage of reflectivities above a
given threshold is the most powerful predictor of convec-
tion for all lead times. As lead times increase, an increas-
ing contribution comes from the surface mesonet and then
upper-air data. The absolute value of convergence and cli-
matological departure of relative humidity are the most
powerful predictors from the mesonet data. By 360 min,
the final equations include a synergistic combination of
predictors from radar, surface, and upper-air data.

The overall performance of the prototype system is
encouraging. When applied to independent data, the sys-
tem has a skill score of 0.39 relative to persistence clima-
tology (alternatively, a 39% improvement in mean squared
error) at 12-min lead times. Skill gradually decreases to
0.09 by the 360-min lead time, although significance test-
ing reveals that forecast performance remains superior to
persistence climatology at the 99.95% level.

1. Introduction

Certain industries, such as aviation, require far more
specific and frequent weather guidance than that provid-
ed by traditional synoptic-scale forecasts of one to three
day lead times. For example, the efficiency of air-traffic
flow is sensitive to local ceiling, visibility, and wind condi-
tions that often differ substantially over distances and
time periods not resolved by conventional synoptic guid-

ance. Likewise, variations in the winds at cruising alti-
tude can substantially affect fuel burn (Qualley 1997),
while rapidly-changing convective storms can force unex-
pected and expensive diversions (Kulesa 2002). It is esti-
mated that the effects of weather cost the airline industry
over three billion dollars annually (Sankey et al. 2000).

The present study focuses on improving convection
forecasts because thunderstorms are the most disruptive
weather feature affecting aircraft operation within the
United States (Post et al. 2002). The National Research
Council (2003) has determined that thunderstorms are a
factor in more than half (60%) of all weather-related
delays. It is estimated that of the billions of dollars the
airline industry expends each year due to weather, at
least half can be attributed to thunderstorms (Evans
2000). Convection is also a safety concern, particularly for
general aviation, with convection being the second lead-
ing cause of weather-related deaths and accidents
(National Transportation Safety Board 1993).

a. Aviation industry needs

These aforementioned statistics present compelling
reasons for constructing thunderstorm forecasting prod-
ucts for the aviation industry. It is instructive, first, to
provide insight into aviation operations, and their impact
by adverse weather conditions. The reader is encouraged
to review MacKeen et al. (1999) for detail on the impact
of thunderstorms on daily operations. In doing so, a thun-
derstorm forecasting system possessing the following
qualities would be of greatest utility to the aviation
industry:

• short-term lead times: capable of outputting forecasts
for lead times <6 h,

• frequently-updating: updates forecasts in a few 
minutes,

• quantifies risk: provides measures of uncertainty (i.e.,
reliable probabilities) of convection occurrence,

• objective: uninfluenced by human forecasting bias or
emotion,

• gridded: generates forecasts for a domain, and
• fine spatial-resolution: discerns hazardous conditions

on the meso-gamma (2-20 km) scale.
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The first two qualities are necessary because convec-
tive situations can rapidly change during the short dura-
tion of a domestic flight. As a result, air-traffic manage-
ment continually makes short-term decisions. In fact,
Forman et al. (1999) revealed that the optimal lead time
needed to manage air traffic within 80 km of an airport
(i.e., terminal traffic) is 30 min.

Moreover, the decision-driven traffic flow system is
deterministic, meaning that a single forecast is produced
for each lead time. Considering the multitude of non-lin-
earities that interact in the atmosphere, the approxima-

tions essential to numerical model initialization, and the
various parameterization schemes necessary to run a
numerical model, it is not surprising that there can be
large uncertainty (and bias) in model forecasts.There has
been increasing effort by traffic flow management to
account for this inherent uncertainty through cost-bene-
fit decision-making – all in an effort to operate at peak
efficiency and minimize the airlines’ operating costs
(Keith and Leyton 2004). This suggests that statistical
techniques that provide objective, quantitative measures
of uncertainty (i.e., reliable probabilities) would also be of
value.

The last two qualities emphasize the spatial properties
of the forecast output. A product that generates forecasts
over a domain could warn of enroute hazardous conditions.
Furthermore, a product with high spatial resolution can
account for possible convection in the departure/arrival
zones surrounding airports. There is a risk, however, that
such output can lose its utility if the spatial resolution
becomes too fine. Because convection is a rare event, the
forecast probabilities may become too low to be meaning-
ful (K. K. Hughes, personal communication 2006).

b. Evolution of the “obs-based” system

Numerous techniques have been developed to begin to
satisfy the above requirements for short-term forecasting
of convection, and Wilson et al. (1998) provides a histori-
cal perspective. In the past decade, the Terminal
Convective Weather Forecast (TCWF), after Theriault et
al. (2000); the Collaborative Convective Forecast Product
(CCFP), after Seseske and Hart (2006); and the National
Convective Weather Forecast (NCWF) System, after
Megenhardt et al. (2000) have been created. Other suc-
cessful products include the Auto-Nowcast Environment,
after Mueller et al. (2000); the Rapid Update Cycle
(RUC), after Benjamin et al. (2004); and the Convective
Probability Forecast (CPF) Product which outputs proba-
bilities with lead times ≥ 2 h., after Weygandt and
Benjamin (2004).

Most relevant to the present study are statistical prod-
ucts that generate probabilities for a gridded domain
using a history of observations. Using a Model Output
Statistics (MOS) approach (Glahn and Lowry 1972),
Charba (1979) developed equations to forecast probabili-
ties of severe thunderstorms across the United States 2-
6 h in advance for an array of boxes 155 km on a side.
More recently, Kitzmiller et al. (2002) developed a 0-3 h
gridded lightning forecast product, updated hourly, for 40
km on a side. A similar product, with a finer 20-km reso-
lution, was developed by Hughes (2004).

The purpose of the present work is to demonstrate a
new system (“obs-based system,” hereafter) that may also
provide utility to the aviation industry because it pos-
sesses the aforementioned qualities. One approach in cre-
ating a system with these properties is to extend the obs-
based system of Vislocky and Fritsch (1997; hereafter
VF97) to a gridded array of points for convection predic-
tion. Additionally, incorporating multiple data types in
the derivation of statistical forecast equations would fur-
ther extend the system. Hilliker and Fritsch (1999; here-
after HF99) and Grover (2002) had shown that including
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Figure 1a. Observation sites considered in the study. The thun-
derstorm forecast system is developed for Oklahoma City, OK
(OKC) (square). Radar data are from the WSR-88D radar site at
Twin Lakes, OK (TLX) (triangle). Profiler data are from Purcell,
Oklahoma (PUR) (larger, black circle). Smaller gray circles are sur-
face reporting sites comprising the Oklahoma mesonetwork. The
closest mesonet site to OKC is Norman, Oklahoma, circled in the
middle of the map.

Figure 1b. Radiosonde sites considered in the study: Denver,
Colorado (DEN); Dodge City, Kansas (DDC); Topeka, Kansas
(TOP); Norman, Oklahoma (OUN); Fort Worth, Texas (FWD);
Midland, Texas (MAF); Amarillo, Texas (AMA); and Albuquerque,
New Mexico (ABQ).



additional data types (upper-air and radar data, respec-
tively) increased forecast accuracy when compared to
forecasts generated solely from surface observations.
Furthermore, since Leyton and Fritsch (2003, 2004)
demonstrated improved accuracy of obs-based techniques
by utilizing high-frequency observations, convection fore-
casts should be constructed with increased temporal and
spatial resolution.

This study incorporates radar data of 4-km resolution,
thus allowing forecasts to be outputted at the same reso-
lution (i.e., gridded boxes are 4 km on a side). This fine
resolution is particularly appealing since convective
activity may be resolved within critical approach and
departure zones. Moreover, since the radar data has a 6-
min temporal frequency1, output could be updated at this
ultra-short-term frequency and focus on a spectrum of
lead times ranging from 6 to 360 min. A suite of lead
times would allow a variety of users in the aviation
industry to utilize this guidance regardless of their area
of responsibility. For example, knowledge that convection
will approach in 30 min is useful for outdoor baggage
transporters or personnel who monitor terminal traffic
during a convective period (D’Arcangelo, personal com-
munication 2002; Forman et al. 1999). On the other hand,
4-h forecasts are ideal for dispatchers who determine
optimal air routes and estimate the needed fuel for each
flight (Hubright, personal communication 2002).

Descriptions of the datasets used as input into the
forecast system and their preprocessing are detailed in
Section 2. The statistical design of the system is docu-
mented in Section 3. Results from predictor testing on a
dependent data set are presented in Section 4, while
quantitative measures of skill of the forecast system
based on independent samples are shown in Section 5. A
summary of results and concluding remarks are provid-
ed in Section 6.

2. Data

The region centered on the Oklahoma City airport
(OKC; Fig. 1a) was selected for developing and testing the
prototype convection forecasting system. This region pro-
vides a unique and extensive array of observing plat-
forms suitable for product development that satisfies the
aviation industry’s short-term forecasting requirements.
The following, mainly high-resolution, datasets were
compiled for four May-June periods from 1995 to 1998.
The May-June period was chosen since it corresponds to
the climatological peak frequency of convection in
Oklahoma (Williams 1994).

a. Radar data

NEXRAD Information Dissemination Service (NIDS)
provided Level III, high resolution (4-km) composite
reflectivity radar data. Composite radar data is the max-
imum reflectivity over a given area using the various
scan angles (Weather Services Incorporated 2007). This
data serves as both input and verification in this study.
Over 40,000 radar images were obtained for the Twin
Lakes, Oklahoma (TLX) radar site, located ~30 km east-
southeast of OKC (Fig. 1a).

Composite radar data may be more desirable than
base reflectivity radar data for aviation purposes because
hazardous weather may be occurring above and/or below
the particular elevation tilt used to create the base reflec-
tivity. However, a forecast system utilizing composite
radar data may lead to over-warning of forecasts if base
reflectivity data is used as verification (i.e., the
observed/actual reflectivity).

b. Wind profiler data

The National Oceanic and Atmospheric (NOAA)
Profiler Network (NOAA 2007) was the source for the 404
MHz wind profiler data obtained from the Purcell,
Oklahoma site. (Fig. 1a). Wind direction and speed for
every 250 m, up to 16,250 m, were available at the top of
each hour.

c. Surface data

Surface data came from the Oklahoma Mesonetwork
(Brock et al. 1995). All 114 sites across Oklahoma, with
an average 30-km horizontal spacing between sites, were
contained in the database (Fig. 1a). Observations, avail-
able every 5 min, included 10-m wind direction and
speed, 1.5-m temperature, relative humidity (RH), solar
radiation, rainfall, and pressure data.

d. Radiosonde data

Radiosonde data (every 12 h) for Norman (OUN),
Oklahoma and seven other sites surrounding OUN (Fig.
1b) came from NOAA/National Weather Service (NWS)
(NOAA/OAR 2007).

When constructing a forecast system based on obser-
vations, it is critical to obtain the highest quality
datasets. Degraded databases dull statistical signals or
even generate false signals. This, in turn, degrades the
performance of the forecast equations and results in an
inferior forecast system. Extensive efforts were employed
to quality control the high-resolution datasets.
Summaries of the experiments leading to quality control
technique development and the techniques’ performance
are presented in Hilliker (2002).

3. Methodology: Statistical Design of Forecasting
System

Designing the forecasting system requires defining the
predictand (i.e., forecast variable), choosing appropriate
lead times, and selecting predictors that are likely to be
of value for forecasting convection.

a. The predictand 

For this study, “convection” is defined as a radar pixel
with composite reflectivity value ≥40 dBZ (decibels). This
corresponds approximately to a Video Integrated
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1The temporal frequency of WSR-88D radar data can be increased
to ~4 min by using VCP 12 (Lee 2004).



Processor (VIP) level 3 and is traditionally the intensity
that pilots begin to avoid by asking for deviations (Rhoda
et al. 2000). Other thunderstorm forecasting studies
(Mahoney et al. 2000; Theriault et al. 2000) have also
used a threshold of 40 dBZ for defining convection in
radar data.

Forecasts of convection occurrence (the predictand) are
made for the radar pixel containing OKC. For the OKC
pixel, an “event” is defined as the presence of convection
in a given radar image. With respect to model develop-

ment, the predictand in this study is necessarily binary,
with events (non-events) coded as “1” (“0”).

Because convection is a rare event (average hourly fre-
quency of 1.3% at OKC), “regionalization” was employed.
Here, data from additional sites with comparable cli-
mates were included to increase the number of events,
thereby strengthening the statistical signal. In this study,
the eight pixels surrounding the OKC pixel were includ-
ed in the development of a single forecast equation.

As a result of expanding the database to include
multiple pixels, additional terminology is needed. Each
radar image is defined as a separate “case” for each
pixel. Therefore, one radar image produces nine cases,
corresponding to each of the nine pixels. For example,
if convection was present in two pixels in each of three
successive radar images, 27 (3 images x 9 pixels) cases
would result, of which six (3 images x 2 pixels) would
be events.

b. Lead times

Table 1 shows the 11 forecast lead times; they range
from 6 min to 6 h. Because these times are single, tran-
sient moments in the future, a temporal flexibility (“win-
dow”) of +/- 8%2 of the lead time was applied to extract a
stronger statistical signal. As an example, an event veri-
fied for the 4-h lead time if convection was observed in
any radar image in the period defined by 3 h 40 min to 4
h 20 min in the future.
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Figure 2. Schematic of the convection forecasting system. The
most powerful predictors from candidate sets of radar, surface
mesonet, and upper-air predictors are linked by using statistical
model fits to form forecast equations for each lead time. Predictor
values are inputted into the equations, which allow thunderstorm
probabilities to be generated.

Figure 3. Schematic of the “monitoring area” concept. A monitor-
ing area (gray circle) is an array of radar pixels upstream from OKC
used to monitor approaching convection. For each lead time, two
monitoring areas are constructed – one using the steering vector,
the other using the Corfidi vector. The center of each monitoring
area (“center point”) is calculated based on the direction and mag-
nitude of the particular vector as well as lead time. Inset shows an
array of radar pixels with a radius of two full pixels.

Table 1. Suite of forecast lead time (in minutes) tested in the
study. Also shown are the temporal windows applied for each
lead time and number of radar images falling within that window.

Mode
Lead Temporal Number of
Time Window Sweeps in
(Min) (Min) Window

6 5-6 1

12 11-13 1

18 17-19 1

24 22-26 1

30 28-32 1

45 42-48 1

60 55-65 2

90 84-96 2

120 110-130 4

240 220-260 7

360 330-390 15

______________________

2 The choice of +/-8% stems from applying reasonable windows of
+/- 5 min at the 60-min lead time, increasing to +/- 30 min at the
360-min lead time.



c. Obtaining predictors

Figure 2 shows a blueprint of the obs-based system.
The most powerful (i.e., significant) predictors from the
radar, mesonet, and radiosonde datasets are linked with
a statistical model to form a forecast equation valid for a
given lead time. The ultimate success of this system
depends upon the robustness of the predictors included in
the final equations. Since a limitless number of combina-
tions of variables can be created, physical reasoning was
used in devising a more manageable number (“pool”) of
candidate predictors. This is where knowledge of thun-
derstorm dynamics, and the ambient conditions that pro-
duce, sustain, and weaken them, is critical in guiding the
builder of a predictive system.

The following subsections summarize the selection of
various predictors and the strategies implemented in
obtaining them. A more extensive discussion on method-
ology, including an exhaustive review of candidate and
final predictors, can be found in Hilliker (2002).

1) Radar predictors

One strategy in identifying potentially skillful predic-
tors from radar data is based on the premise that a par-
ticular wind direction dictates thunderstorm movement.
A widely-recognized vector that specifies movement of
individual thunderstorms is the mean flow in the cloud
layer (“steering vector,” hereafter), often calculated as a
vector average of the 300-, 500-, 700-, and 850-mb winds
(Fankhauser 1964). Consequently, mean cloud-layer flow
is utilized in aspects of several thunderstorm forecast
products (Theriault et al. 2000; Megenhardt et al. 2000;
Mueller et al. 2000, 2003). For large convective systems

(e.g., squall lines, mesoscale convective complexes),
Corfidi et al. (1996) found that the vector difference
between the low-level jet and the mean cloud-layer flow
had a relatively high correlation (0.78-0.80) to a system’s
movement. Therefore, both the steering and Corfidi vec-
tors were examined as potential predictors.

Profiler data from Purcell, OK, were used to compute
the steering and Corfidi vectors. Vectors were calculated
at the top of each hour and interpolated within the hour
to correspond with the 6-min time stamps of the radar
images. The 850-mb flow was used as a proxy for the low-
level jet in computing the Corfidi vector.

Once the steering and Corfidi vectors were known,
areas were defined upstream from OKC as a means to
gauge, or monitor, approaching convection. Figure 3 illus-
trates this concept. The centers of these monitoring areas
(hereafter “center points”) can be located based on each
vector’s magnitude and direction. Note there would be 22
monitoring areas for each radar image - two vectors for
each of the 11 lead times.

Figure 3 shows center points and monitoring areas for a
30-min lead time. If the steering flow were 245° at 15 m s-1

in this example, the center point would be (15 m s-1) (1800 s)
= 27 km southwest of OKC. Naturally, the center points
would be farther upstream for longer lead times. The same
methodology was then repeated using the Corfidi vector.

Given the location of an upstream monitoring area, it
was then necessary to determine the optimal size of the
monitoring area for each lead time. To accomplish this,
various-sized arrays of pixels were constructed in a pilot
study to determine the optimal size. Each array approxi-
mated a circle, with the center pixel of each array co-
located with the center point. As an example, the inset in
Fig. 3 depicts a circle of radius of two full pixels.
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Table 2. Properties of the pre-selected (stationary) monitoring boxes as a function of lead time. The second column indicates the length
(in km) of the box. Subsequent columns list the location of the center with respect to OKC of the suite of eight stationary boxes prescribed
in the study. Centers of the eight boxes are located in each of the eight primary compass directions away from OKC. For example, (-4,8)
under “NW” indicates that the center of the northwestern box is 4 km west and 8 km north of OKC.

Lead Box
Time Length
(Min) (KM) W NW N NE E SE S SW

6 12 (-4,0) (-4,8) (0,8) (4,8) (4,0) (4,-8) (0,-8) (-4,-8)

12 12 (-8,0) (-8,8) (0,8) (8,8) (8,0) (8,-8) (0,-8) (-8,-8)

18 16 (-12,0) (-12,16) (0,16) (12,16) (12,0) (12,-16) (0,-16) (-12,-16)

24 16 (-16,0) (-16,16) (0,16) (16,16) (16,0) (16,-16) (0,-16) (-16,-16)

30 24 (-20,0) (-20,24) (0,24) (20,24) (20,0) (20,-24) (0,-24) (-20,-24)

45 40 (-28,0) (-28,40) (0,40) (28,40) (28,0) (28,-40) (0,-40) (-28,-40)

60 56 (-40,-4) (-40,52) (0,52) (40,52) (40,-4) (40,-60) (0,-60) (-40,-60)

90 72 (-40,-4) (-40,68) (0,68) (40,68) (40,-4) (40,-68) (0,-68) (-40,-68)

120 88 (-48,-8) (-48,96) (0,96) (48,96) (48,-8) (48,-100) (0,-100) (-48,-100)

240 120 (-64,-8) (-64,112) (0,112) (64,112) (64,-8) (64,-128) (0,-128) (-64,-128)

360 160 (-84,-12) (-84,148) (0,148) (84,148) (84,-12) (84,-148) (0,-148) (-84,-148)

LOCATION OF CENTER OF BOX WITH RESPECT TO OKC (DX, DY) (KM)



A suite of 36-sized circles was empirically tested, rang-
ing from a radius of zero (i.e., the center pixel itself) to 140
pixels. For each array for each lead time, a “percent cov-
erage” (P) was computed – a parameter defined as the
fraction of radar pixels inside the circle of a given thresh-

old value to the total number of pixels comprising the cir-
cle (Germann and Zawadski 2002).

In addition, because the forecasting system must deal
with both individual thunderstorms and organized con-
vective systems, a procedure was developed that “chooses”
the appropriate vector based on the spatial properties of
the convection. This required the forecast system to be
able to distinguish between events composed predomi-
nantly of individual thunderstorms and those that exhib-
ited a larger, contiguous area of convection.

To achieve this, two parameters were defined to char-
acterize the spatial scale of the convection: a) percent cov-
erage (P), defined earlier; and b) “interconnectedness” (I)
or number of pixels ≥ 40 dBZ connected to (i.e., “touching,”
or having a common side to) another ≥ 40 dBZ pixel with-
in the monitoring area. Here, small (large) values of P or
I correspond to smaller- (larger-) scale events.

To complement the monitoring areas, an additional set of
pre-selected, or stationary, monitoring boxes (squares) was
constructed, where P values were again computed. For each
lead time, eight boxes were constructed, with centers locat-
ed in each of the eight primary compass directions away
from OKC. Table 2 shows the “box length” (i.e., the square’s
side distance) and placement with respect to OKC of each
box as a function of lead time. Using a methodology similar
to Grover (2002),monitoring boxes expand with lead time as
their centers become more distant from OKC.
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Table 3. Selected candidate radar predictors, and their 
notation.

CANDIDATE RADAR PREDICTOR NOTATION

Reflectivity at OKC R

Percent areal coverage of reflectivity 
within stationary monitoring boxes dB
(located in direction, d) from OKC

Percent areal coverage of reflectivity
within upstream monitoring areas.

Location of upstream area determined S
by using the steering flow

Same as above, but by using the Corfidi vector C

Same as S and C, but the value of the 
“percent areal coverage” itself dictates P

whether the steering or Corfidi vector is used

Same as S and C, but the value of the
“interconnectedness” dictates I

whether the steering or Corfidi vector is used

Predictor
Temporal changes of the predictors above preceded by 

“D” (e.g., DS)

Table 5. Selected candidate upper-air predictors. Notation (sec-
ond column) adheres to the following convention: pXABC, where
“p” is the pressure level of the parameter (where applicable),
and “ABC” is the radiosonde identifier, from Fig. 1b.

CANDIDATE UPPER-AIR PREDICTOR NOTATION

Lifted Condensation Level (mb) LCLABC

Convective Available Potential Energy (J kg-1) CAPEABC

Lapse Rate (700-500 mb) (°C) LRABC

Total Totals (°C) TTABC

K-index (°C) KABC

Lifted Index (°C) LIABC

800-700 mb Mean Relative Humidity (%) RH87ABC

700-500 mb Mean Relative Humidity (%) RH75ABC

800-500 mb Mean Relative Humidity (%) RH85ABC

500 mb Relative Vorticity (m s-1) V

Temperature (at pressure, p) (°C) pTABC

Relative Humidity (at pressure, p) (%) pRHABC

Climatological Departure of Relative Humidity
(at pressure, p) (%) pRH´ABC

Table 4. Selected candidate surface mesonet predictors.

CANDIDATE MESONET PREDICTOR

Temperature (°C)

Relative Humidity (%)

Dewpoint (°C)

Relative Humidity Difference (%)
(Spatial)

Dewpoint Difference (°C)
(Spatial)

Climatological Departures
on all of the above parameters

Convergence (m s-1)

Absolute Value of Convergence (m s-1)

Binary Logic Predictors (BLP)



Naturally, the preceding predictors are relevant for
convection already in progress. To forecast the develop-
ment and dissipation of convection, temporal changes in
percent coverage values were tested. Supplemental pre-
dictors, deemed most valuable for ultra-short-term lead
times, included present and temporal changes in reflec-
tivity at OKC.An abridged version of the candidate radar
predictors tested is shown in Table 3.

2) Surface mesonet predictors 

Table 4 shows an abridged list of surface mesonet can-
didate predictors. Example predictors include relative
humidity, its departure from sample climatological val-
ues, and the spatial difference in dew-point between OKC
and each of a 48 equally-spaced sample of mesonet sites,
shown in Fig. 4.

Several studies (e.g., Byers and Braham 1949;
Garstang and Cooper 1981) have shown the importance
of boundary-layer convergence in thunderstorm evolu-
tion. Thus, derived parameters, such as surface conver-
gence, and its absolute value (i.e., convergence or diver-
gence) were also considered. Convergence values were
computed using the line integral method (Zamora et al.
1987; Davies-Jones 1993), and diagnosed using various
spatial resolutions by varying the number of mesonet
sites included.

Another category of predictors, termed “binary logical
predictors” (BLP, hereafter) was devised to identify areas
that are traditionally associated with convective develop-
ment (e.g., vicinity of cold fronts, dry lines). A BLP was
assigned a value of “1” if three constructed parameters
exceeded given thresholds; otherwise, the predictor was
assigned a value of “0.” One example BLP was “1” if:

a) the dewpoint at Norman, Oklahoma (NORM; circled
in Fig. 1a), the closest mesonet site to OKC, were ≥20°C,
and 

b) the climatological departure of dewpoint at NORM
were ≥4°C than that of TEST, a dummy mesonet site rep-
resenting one of the 48 sample mesonet sites, and

c) the absolute difference in wind direction between
NORM and TEST were ≥30°.

3) Upper-air predictors

Previous studies have shown the value of upper-air
variables in short-term thunderstorm forecasting [e.g.,
relative humidity (Sanders and Garrett 1975); Total-
totals index (Miller 1967)]. In addition to offering raw
parameters observed at the eight radiosonde sites shown
in Fig. 1b, each parameter’s departures from the dataset’s
sample climatology were also considered. Kinematical
variables, such as convergence and vorticity, were also
tested for possible predictive value. Additional candidate
upper-air predictors are shown in Table 5.

d. Testing on the dependent data set

Three years of the 4-yr database served as the
dependent data set, from which the candidate predic-
tors above were tested. The remaining year served as

the independent data set, to which the forecast equa-
tions were applied and probabilistic thunderstorm
forecasts were generated. To ensure that the most
robust statistical results were obtained, “cross-valida-
tion” was applied. In cross-validation, the 4-yr data-
base was subdivided into four combinations of larger
(3-yr) dependent data sets and smaller (1-yr) indepen-
dent datasets.

The statistical software package IMSL ascertained
the most powerful predictors, their t-values, ranking
order, as well as explained variances (Visual
Numerics, Inc. 1997). The t-value measures the predic-
tor’s degree of linear association with thunderstorm
occurrence, with higher absolute values indicating
stronger association.

To obtain an optimal set of predictors, the “efroym-
son” method was selected as the stepwise regression
procedure. This method is similar to a forward selec-
tion procedure in that a predictor is chosen based on
its ability to independently produce the largest reduc-
tion in the residual sum of squares. However, when a
new predictor is added to the subset, the efroymson
method determines if any of the previously selected
predictors in the subset no longer contributes signifi-
cantly to the modeled fit. If this is the case, the predic-
tor is eliminated.

In addition, the number of predictors included in the
final equations depends on a prescribed “cutoff” t-value
(tc). Once the absolute value of the t-value of the next
significant predictor falls below tc, no additional predic-
tors are included, and the equation is finalized.
Although it may be tempting to include many predictors
to achieve the best modeled fit, the risk of “overfitting”
increases. Over fitting is defined as the inclusion of pre-
dictors only meaningful to the dependent data set,
which results in degraded equation performance when
applied to a different, or independent, set of data.

To objectively optimize tc, one of the 3-yr dependent
data sets was sacrificed by subdividing it into a 2-yr
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Figure 4. Contours of t-values, using a sample of 48 mesonet
sites, of the climatological departure of relative humidity as a pre-
dictor for 240-min convection forecasts.



sub-dependent set and a 1-yr sub-independent set.
Using the sub-dependent data, a suite of forecast equa-
tions was then developed by varying the number of
predictors, dictated by testing various tc values. Each
equation was then applied to the sub-independent data to
generate forecast probabilities. The mean squared errors
(MSE) between these probabilities and the observed were
then calculated to estimate the optimal tc for each lead
time. In this study, a tc of 20 minimized the MSE for lead
times ≤ 60 min; by the 360-min lead time, tc increased to
90. In general, this allowed 4-10 predictors to be included
in the final equations.

Additional information on stepwise regression, choos-
ing t-values, and overfitting can be found in Wilks (1995)
and Neter et al. (1996).

4. Results: Dependent Data Set

An examination of how each of the data types was uti-
lized in the forecasting system is presented. Results pre-
sented here are based upon the dependent data set con-
sisting of 1995, 1996, and 1998 data, which comprised
~200,000 cases and ~6800 events. No significant depar-
tures in the nature of the best predictors were noted for
the other dependent data sets.

a. Radar predictors

Results indicated that through a 45-min lead time
over all cases in the database, the steering vector was
more highly correlated to the predictand (thunderstorm
occurrence) than the Corfidi vector. After 45 min, there
was no significant favorite; however, each vector often
provided valuable statistically independent information.

Figure 5 shows the highest correlated monitoring area
radius at which to extract percent coverages using solely
the steering vector. This analysis revealed that the best
radius increased from 8 km for a 6-min lead time to 492
km for a 360-min lead time. The superimposed bold line
is a best linear fit of radius to lead time using a power
equation. Because the coefficient and exponent in the
equation are both close to unity, the optimal radius (in
km) is nearly equal to the lead time (in min).

Figure 5 also reveals the optimal reflectivity threshold
for thunderstorm forecasting as a function of lead time.
For lead times ≤ 240 min, a 40 dBZ reflectivity threshold
(the same threshold as the predictand) was preferred for
computing percent coverages. For longer lead times, the
optimal threshold decreased to 20 dBZ.

b. Surface mesonet predictors

When solely mesonet data were offered to the predic-
tor selection routine, the departure of relative humidity
from climatology (RH′) was consistently chosen as a pow-
erful predictor. Another frequently appearing predictor
was convergence, an anticipated result since it is well
known that low-level convergence in a conditionally
unstable atmosphere is an excellent predictor of convec-
tion. In this study, however, the absolute value of the con-
vergence was generally a better predictor than conver-
gence alone. It is hypothesized that this parameter is
indicative of disturbed conditions reflecting the conver-
gence/divergence dipole signature that typically occurs
with the passage of a thunderstorm.

In addition to ascertaining useful parameters, it was
also enlightening to determine where the most influential
mesonet sites are located. Figure 4 shows contours of t-
values of RH′ using a 48-station sample for a 240-min
forecast of convection. Note the maximum is across
southwest Oklahoma, with Altus (ALTU in Fig. 6) the
most significant mesonet site. In this example, southwest
Oklahoma is a region of positive t-values, indicative of a
positive association between RH′ and convection occur-
rence (i.e., the greater the station’s RH is above its clima-
tology, the greater the chance of storms at OKC in 240
min). The second and third most powerful stations for
RH′ for the 240-min lead time (not shown) are located in
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Figure 5. Optimal radius (in km) of monitoring area (dashed blue
line) as a function of lead time using the steering vector. The bold
line indicates a best fit using the labeled power equation. Also
shown is the optimal reflectivity threshold (solid red line) for 
computing percent coverages.

Figure 6. Location of the most beneficial surface mesonet sites
(larger gray circles) for thunderstorm forecasting — using RH’ as a
predictor — as a function of lead time (in minutes, and labeled next
to the relevant station). “ELRE” is El Reno, “HOBA” is Hobart, and
“ATLU” is Altus.



the Oklahoma panhandle and north-central Oklahoma,
respectively. Note these sites do not come from the region
of maximum t-values; rather, they are chosen because
they come from regions that provide statistically inde-
pendent information to the forecast. One possibility why
RH′ was chosen in vastly different areas was to optimize
the system’s ability to “detect” if, and where, a triggering
mechanism for convection (e.g., the dry line) exists.

Plots similar to Fig. 4 were constructed for each lead
time. As a summary, Fig. 6 shows the locations of the
most significant mesonet sites for select lead times using
RH′ as a predictor. As expected, the most significant site
progresses farther to the west, and then southwest, with
lead time. For lead times ≥ 60 min, ALTU – the farthest
station in southwest Oklahoma – is chosen. It is likely
that sites in northwest Texas would have been chosen for
longer lead times if such data were available.

c. Upper-air predictors

Results from the predictor screening indicated no
upper-air parameters present in the top 20 final predic-
tors for lead times ≤ 30 min. However, the number and
significance of upper-air predictors increased with lead
time, with four upper-air predictors present for the 60-
min lead time. By 360-min, eight were included in the top
20 final predictors. The majority of these predictors
focused on atmospheric stability and amount of mid-tro-
pospheric (400 mb) moisture. As expected, the majority of
predictors were for Norman, although data from sur-
rounding upper-air stations (e.g., CAPE at Midland,
Texas; Lifted Index at Dodge City, Kansas) provided addi-
tional independent information.

d. Final set of predictors

The complete forecast equations include an optimal
blend of predictors from all three data types. The top five
predictors (in order of significance) for each lead time
using the 1995, 1996, and 1998 dependent data set are
shown in Fig. 7. Although there were slight variations in
the nature and order of predictors from the other combi-
nations of dependent data sets, the predictors are an
excellent representation of the most powerful for short-
term forecasts of thunderstorms.

Several observations on the nature of the final set of pre-
dictors can be made. Foremost, the upstream areal percent
coverage of high reflectivities is the most frequently includ-
ed predictor for all lead times. Note that both the stationary
boxes (B in Fig. 7) and those areas that incorporate the
upper-level wind flow (S and C) populate the final set.
Specifically, the most powerful predictor for lead times ≤ 45
min is 

W
B, the areal coverage of reflectivity ≥ 40 dBZ west of

OKC, an intuitive result. Note that this predictor ranks
ahead of R, the most recent reflectivity observation at OKC,
at the 6-min lead time.This signals an important departure
from VF97, HF99, Leyton (2003), and Fritsch (2004) in that
the most recent predictand observation is not the best pre-
dictor for the shortest allowable lead time given the tempo-
ral frequency of the observations.

Other top predictors included those that assessed the
percent areal coverage (P) and interconnectedness (I) of

the ongoing convection. Their popularity is encouraging
in that the use of stratification techniques, albeit simple
in this study, provided additional information. Finally,
temporal changes in the above predictors occasionally
appeared. For example, the 6-min change in reflectivity
at OKC (∆R) ranked third at the 6-min lead time, reveal-
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Figure 7. Top 5 predictors (in order of significance) for short-term
convection forecasting as a function of lead time. Predictor notation
is referenced in Tables 3 & 5. Boxes are shaded with respect to
data type, as shown in legend. “BLP” refers to constructed binary
logic predictors by using the surface mesonet.

Figure 8. Explained variance (i.e., R2 value) of observations-
based forecasts as a function of lead time. The contribution of the
explained variance from each of the data types is also shown.
Radar contribution is shown in black, surface mesonet in gray, and
upper-air in white. The independent contribution of the current
radar observation at OKC for the 6-min forecast is denoted as
cross-hatching.



ing the significance of convective trends in short-term
forecasting.

For lead times ≤45 min, radar predictors comprise
the top five predictors, after which a greater number of
mesonet – then upper-air – predictors are included. By
360-min, most predictors come from either mesonet or
upper-air data. Although absolute convergence or rela-
tive humidity do not explicitly appear in the top five, it
is likely that the criteria incorporated into the
mesonet BLPs implicitly accounted for these 
parameters.

e. Equation development

After the best subset of predictors was identified, the
most accurate statistical model fit was determined to
form the forecast equations. Using a statistical software
package (S-PLUS 1999), various statistical model fits
(e.g., multiple linear regression (MLR), logistic regres-
sion) were tested on the set of best predictors. However,
since forecast probabilities can occasionally lie outside
the range [0,1] when applying MLR, probabilities were
truncated to either 0 or 1, when appropriate. In this
study, MLR typically resulted in the lowest MSE.

Once model coefficients were derived using MLR, a
working equation for the OKC pixel linking the top pre-
dictors for each lead time was formed. Figure 8 shows the
explained variance (R2 value) of the developed equations,
averaged over all four dependent data set combinations,
as a function of lead time. As expected, the explained
variance generally decreases with lead time.

Also shown is the relative contribution to the
explained variance from each data type. For lead times ≤
30 min, radar data comprise all the explained variance.
The surface mesonet then becomes increasingly signifi-
cant, contributing 3-5% to the variance for lead times of
90-360 min. The first indication that upper-air data con-
tribute to the forecast system is at 90 min. By 360 min,
upper-air data contribute ~4% to the variance, the same
magnitude as the mesonet. At this longer lead time, non-
radar predictors explain roughly half the explained vari-
ance. The figure also shows the contribution of the most
recent reflectivity observation at OKC. Note there is a
small (< 1%) independent contribution of the most recent
observation at the 6-min lead time.

5. Results: Independent Data

a. Forecast skill 

Using the developed equations, probabilistic forecasts
were generated for each case in each of the independent
samples. Mean squared errors were then computed. The
MSEs were also calculated by using climatology, persis-
tence, and persistence climatology3 (PC, a one-predictor
equation using the most recent reflectivity observation at
OKC). Figure 9 compares the MSE of the obs-based sys-
tem to each of the three benchmark performance mea-
sures as a function of lead time. (The values of MSE in
Fig. 9 are an average based on all four independent data
sets.) Alternatively, Fig. 10 presents the skill score of the
obs-based system relative to PC. For comparison, the skill
scores for persistence and climatology are also shown.
Because temporal windows were applied in this study
that resulted in an artificial increase in number of events
with lead time, comparisons of skill score from lead time
to lead time must be made with caution.

It is encouraging that the obs-based system is supe-
rior (i.e., has a positive relative skill score) to PC for all
lead times. Figure 10 shows that the greatest skill is
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Figure 9. Mean square errors of the observations-based system
(black line with circles), persistence climatology (solid gray line with
squares), climatology (dashed gray line with triangles), and persis-
tence (solid gray line with diamonds) as a function of lead time.

Figure 10. Skill score of the observations-based system (black
line with circles), climatology (dashed gray line with triangles), and
persistence (solid gray line with diamonds) all relative to persis-
tence climatology as a function of lead time. A positive (negative)
skill score indicates skill that is better (worse) than persistence cli-
matology.

______________________

3 Persistence climatology is also known as conditional persistence
or conditional climatology, as defined in Wilks (1995).



achieved in the shortest lead times tested in this study.
A skill of 0.39 is achieved at the 12-min lead time,
translating into a 39% reduction in the MSE over PC.
Skill gradually decreases with lead time, which is
expected considering the system’s sole dependence on
observations.

When all cases were considered, a paired-difference t-
test confirmed that the obs-based forecasts were superior
to PC forecasts to a statistically significant degree (in this
study, the 99.95% level) for all lead times. However, spa-
tial dependence among the forecasts cannot be discount-
ed, which effectively reduces the number of statistically
independent cases.The stringent assumption of total spa-
tial dependency was applied, dictating that one-ninth of
the cases (i.e., those forecasts from one pixel – the OKC
pixel) were retained. A reanalysis of the paired-difference
test revealed that the obs-based forecasts remained sta-
tistically superior at the 99.95% level through lead times
of 360-min

4
.

Finally, further examination of Fig. 10 reveals the
point in time at which the skill using persistence becomes
less than that using climatology when forecasting con-
vection. This transition time is 20 min, testifying to the
short-lived nature of convection.

Although MSE is a convenient way to assess proba-
bilistic forecasts, Wilks (1995) emphasizes, MSE is a sin-
gle – and incomplete – way to evaluate forecast perfor-
mance. Other scalar attributes of forecast quality, such as
forecast bias, discrimination, and reliability, reveal addi-
tional information about the joint distribution between
forecasts and observations. Two of the aforementioned
scalar aspects are now investigated.
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Figure 11. Discrimination plots revealing forecast probabilities when convection was observed (dashed lines) and not observed (solid lines)
for lead times of: a) 12-min; b) 45-min; c) 120-min; and d) 360-min.Total frequencies sum to 100% on the log axis.The median forecast prob-
ability when convection was observed is also labeled for each lead time.

______________________

4 The obtained test t-value for the 12-min (360-min) forecasts was
15.7 (5.9), exceeding the critical t-value (using n `; 99.95% level)
of 3.29.



b. Forecast discrimination

Figure 11 presents discrimination plots for four lead
times from the obs-based system. Shown are distribu-
tions of obs-based probabilistic forecasts for the subset of
events when: a) convection at OKC was observed (verifi-
cation probability = 100%), and b) convection at OKC was
not observed (verification probability = 0%). It is evident
from the sold lines in the figure that the most common
forecast probability is ~0%, regardless of lead time – a
reflection of the infrequent occurrence of convection.
Thus, the statistics presented thus far are heavily
weighted toward the system’s performance during non-
convective (i.e., tranquil) conditions. More revealing is
how well the system performs during convective 
situations.

Figure 11 reveals that for the subset of cases where
convection did occur (dashed lines), the forecast system
overall generated higher probabilities compared to the
extremely low value (4%) of using persistence climatol-
ogy. To indicate this, the median forecast probability
when convection was observed is included in the figure.
Note that the majority of the forecast probabilities for the
12-min lead time is > 50% (the median probability is
63%). The system’s lack of ability to establish all proba-
bilities near 100% when thunderstorms occurred is like-
ly indicative of their short life cycle and highly variable
movement. With increasing forecast time, the median
probability of convective events expectedly trends lower
to 21% at the 120-min lead time, revealing the loss of pre-
dictability with time by exclusively using observations.

c. Forecast reliability 

The principle merit of a forecast system that outputs
reliable probabilities allows the user to make decisions
with full knowledge of the actual level of risk. A forecast
is said to be reliable if its probability matches the event

percent frequency over many times the same probability
is issued. For example, convection would be expected to be
observed 400 out of every 1000 times a reliable 40% prob-
ability is issued.

Figure 12 shows the reliability diagram for forecasts
from the 12- and 120-min lead times. It is important to
reiterate that the forecast sets from which these dia-
grams were constructed have varying temporal windows
and spatial scales (i.e., monitoring areas). Diagrams for
other lead times (not shown) confirm that the probabilis-
tic forecasts from this system are generally reliable.

6. Summary and Concluding Remarks

Accurate short-term weather forecasts of convection
are a critical component to airline operations since con-
vection has a significant impact on the air-traffic flow sys-
tem. With the availability of several years of high-fre-
quency, mesoscale-resolution weather observations, there
is now an opportunity to provide to air-traffic managers a
system that can automatically assimilate a multitude of
parameters, then reliably and frequently quantify the
risk of convection in a timely manner for a multitude of
locations via robust, coherent probability fields.

The main results from this study – valid for OKC 
during May/June – are as follows:

• The observations-based system achieves skill scores,
relative to persistence climatology, ranging from 0.09
(360-min lead time) to 0.39 (12-min lead time), with the
superiority to persistence climatology statistically sig-
nificant at the 99.95% level.

• Radar data have the greatest contribution to skill, with
an increasing contribution from surface mesonet, then
upper-air data, for longer lead times. By 360 min, the
forecast equations include predictors from all three
data types.

• The most powerful predictor is the percent areal cover-
age of high reflectivities (typically, a threshold of ≥ 40
dBZ) within an area upstream to OKC.

• Absolute convergence and the climatological departure
of relative humidity are the most beneficial predictors
from the surface mesonet data.

• The mesonet site that offers the greatest predictability
is the one closest west to OKC for a 6-min lead time,
~100 km southwest of OKC for the 30-min lead time,
and in extreme southwest Oklahoma for lead times ≥
60 min.

• The most frequently chosen predictor from the upper-
air data is the amount of mid-tropospheric moisture
(i.e., 400 mb relative humidity) from the closest
radiosonde site to OKC – Norman. Nearby radiosonde
sites provide some statistically independent informa-
tion.

Although this prototype was developed for OKC, a sim-
ilar process of devising and testing predictors to generate
gridded forecasts could be repeated on a national scale.
The system’s choice of predictors, or its performance,
however, may not be representative as shown here
because of the current lack of high-resolution observa-
tional datasets nationwide.
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Figure 12. Reliability diagram of probabilistic obs-based forecasts
for the 12-min (dashed gray line with squares) and 120-min
(dashed gray line with triangles) lead times. A set of perfectly reli-
able forecasts is denoted by the solid black line.



Conversely, system performance may be enhanced,
particularly for the longer lead times, if information on
the location/intensity of convection beyond the radar
range (i.e., across the Texas and Oklahoma panhan-
dles) as well as upper-level winds upstream of OKC is
included. High-quality surface data from the West
Texas Mesonet may also increase forecast accuracy.
Further improvements in skill for longer lead times
could be garnered by incorporating model data into the
system (Porter 1995). Forecast equations for an inter-
im period (e.g., 3-9 h) would consist of an optimal blend
of model data and observations.

As alluded earlier, the success of this system is
directly tied to the robustness of the datasets.
Operational data can be noisy, bad, and/or missing.
Quality-control algorithms applied to real-time data
would complement this forecast system. The quality of
the WSR-88D radar data is particularly significant
because this data type not only dominates the final
forecast equations, but radar data are used as sole ver-
ification of the presence of convection. Besides the
complexities of identifying non-precipitating echoes or
bright-banding, a more serious issue would be beam
blockage, a relatively common occurrence in the West,
where the mountains interfere with the radar’s ability
to sample targets. The system would either perform at
a degraded level, or not at all if radar coverage were
incomplete. Satellite and lightning datasets would
then become essential.
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