
Abstract

The accuracy of snowfall accumulation forecasts has widespread economic and safety consequences.  
Due to the complex structure and dynamics of winter weather systems, snowfall accumulation forecasts 
tend to have a large degree of uncertainty associated with them.  Numerical weather prediction (NWP) 
ensemble prediction systems were developed specifically to address the uncertainty in weather forecasts.  
An accurate deterministic forecast as well as an estimate of the uncertainty is of utmost importance to the 
public; therefore, the ensemble mean is often used as the deterministic forecast and the ensemble spread as 
the basis for a forecast uncertainty estimate.  This approach works for weather parameters directly forecast 
by the model; however, snowfall accumulation is not directly forecast by the Global Ensemble Forecast 
System (GEFS).  Therefore this study examines nine artificial intelligence methods for producing a 24-h 
snowfall accumulation prediction from the parameters directly output from the GEFS.  These methods are 
then examined by their deterministic forecast skill using the mean absolute error of the ensemble mean 
forecast as well as the degree to which the ensemble spread corresponds to forecast uncertainty, which is 
examined by spread-skill relationships and quantile-quantile plots.  Out of the nine methods—an artificial 
neural network, linear regression, least median squares regression, support vector regression, radial basis 
function network, conjunctive rule, k-nearest neighbor, regression tree, and an average of these methods—
the k-nearest neighbor method produces significantly more accurate forecasts as well as the best calibrated 
ensemble spread.  This postprocessing method would be appropriate for operational forecasting.
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1. Introduction

	 Meteorologists face the difficult task of forecasting 
complex winter storm systems that can affect millions of 
people.  More than 85,000 automobile crashes occurred on 
average each year for the period 1995-2001 nationwide 
when road conditions were reported as either snowy 
and slushy or icy (Kocin and Uccellini 2005).  On average 
1270 fatalities per year occur during snow/ice road 
conditions (Kocin and Uccellini 2005).  The most severe 
winter storms also can have an extensive impact on the 
economy.  The National Climatic Data Center (NCDC) 
estimated the March 1993 and January 1996 storms 
each resulted in billions of dollars in damage (Kocin 
and Uccellini 2005).  Winter weather forecasts provide 
state and local departments of transportation with the 
information required to prepare for these winter weather 
events efficiently and safely.   At the 2005 United States 
Weather Research Program Workshop, Ralph et al. (2005) 
stated “one effort should focus on winter storms along 
the East Coast of the United States, with freezing rain, 
coastal cyclones (e.g., nor’easters), heavy snow, and lake 
effect snow as priorities.” Thus, accurate winter weather 
forecasts are valuable for public safety and more research 
is warranted to improve these predictions, particularly 
for this region.
	 Forecasting snowstorms is a multifaceted problem 
presenting many challenges.  One challenge is the 
difficulty of obtaining accurate and precise snowfall 
measurements, due to blowing and drifting that depends 
on the location and the surface of the observation, melting, 
compaction, mixed precipitation events, and how often 
the measurement is taken (Doesken and Leffler 2000).  
Without consistent and accurate snowfall accumulation 
observations, it is difficult to evaluate the performance 
of any forecast system.  Another challenge in snowfall 
forecasting is that both small and large snowfall events 
can have similar weather conditions prior to accumulating 
snowfall.  
	 A major development in weather forecasting is the 
advent of meteorological ensembles. Ensemble forecasts 
represent a set of possible realizations of future states of 
the atmosphere.  The mean of the ensemble is typically 
a more accurate forecast than that of a single member 
(Woodcock and Engel 2005).   Grimit and Mass (2002) 
show that a correlation exists between ensemble spread 
and forecast uncertainty, thus providing the forecaster 
with valuable uncertainty information.  Advanced 
statistical post-processing techniques recently have been 
developed and implemented in order to improve both 
the calibration of uncertainty information and the overall 

accuracy of NWP ensembles (Kolczynski et al. 2009; Delle 
Monache et al. 2011).  
	 Statistical post-processing methods such as model 
output statistics (MOS) typically improve the prediction 
of direct variables (Glahn and Lowry 1972) and has been 
applied to ensembles as well (Woodcock and Engle 2005). 
Here we wish to explore whether other statistical post-
processing techniques would yield forecast improvement 
when applied to an ensemble for an indirect variable, 
specifically snowfall accumulation prediction.   Different 
methods of post-processing ensemble forecasts in 
order to improve weather prediction has been studied 
in various contexts (Raftery et al. 2005; Greybush et 
al. 2008; Glahn et al. 2009). Although many of these 
advanced statistical post-processing methods have been 
shown to improve general forecasting, only recently have 
there been attempts to use post-processing to improve 
snowfall accumulation predictions.  Cosgrove and Sfanos 
(2004) apply MOS techniques to forecast the conditional 
probability of snow and the snowfall amount exceeding 
a specific threshold, given that snowfall occurs, using the 
Global Forecast System (GFS) model.  
	 The goal of this study is to test the ability of advanced 
statistical post-processing methods to improve both 
the overall accuracy and the ensemble calibration of 
the forecast uncertainty information for 24-h snowfall 
accumulation predictions from the Global Ensemble 
Forecast System (GEFS). Improving the forecast accuracy 
and ensemble uncertainty calibration is vital for 
operational meteorologists who wish not only to predict 
snowfall accumulation more accurately, but also to 
quantitatively address the uncertainty in the prediction.  
Nine different statistical post-processing methods are 
tested for producing 24-h snowfall accumulation forecasts 
from the GEFS direct model output.  These methods are 
trained to reduce the error of a single “control” ensemble 
member and then applied to each ensemble member 
individually1. These individual ensemble members are 
then used to produce a single consensus forecast of 
snowfall accumulation at specific points.  The objective is 
to determine if it would be prudent to use any of these 
methods operationally.  Several techniques are used to 
examine the calibration of ensemble spread.  The accuracy 
of both results is then evaluated on two separate datasets 
that are split based on the observation’s altitude. 
	 In section 2, the GEFS and the cooperative observing 
network are described.  The statistical guidance methods 
used in this study are explained in section 3.   In the 
following section results are summarized and discussed.  
Conclusions and prospects for future research are 
discussed in section 5.

1 This approach is appropriate because all members of the GFS ensemble have the same physics and differ only in initial 
conditions.
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2. Data

a. Cooperative Observing Network

	 In order to test the validity of any forecast system, 
or indeed, to create a consistent, reliable statistical 
post-processing system, an accurate observing system 
is necessary (Allen 2001).  This issue poses particular 
challenges for snowfall accumulation prediction.   In 
order to achieve adequate spatial coverage, the NCDC 
Cooperative Summary of the Day (co-op) reports are used 
as the snowfall observations.  The co-op stations do not 
report at a fixed time each day; thus in order to maintain 
consistency and to provide a valid test of the statistical 
guidance methods as described by Allen (2001), only 
those sites when observations are taken between 1100 
Coordinated Universal Time (UTC) and 1700 UTC are 
retained.  This restriction allows us to compare the 
observations to 24-h snowfall accumulation forecasts 
valid for the period ending at 1200 UTC.  Moreover, most 
of the observations are recorded between 1100 UTC and 
1700 UTC so little data is lost by the imposition of this 
restriction  This methodology is the same as that used by 
Cosgrove and Sfanos (2004).  Only the co-op observations 
with a snowfall measurement of a trace or more are 
retained. The resulting dataset spans the period from 1 
October 2006 to 31 March 2007.  

b. Global Ensemble Forecast System

	 The National Center for Environmental Prediction 
(NCEP) Global Ensemble Forecast System (GEFS) uses 
the Global Spectral Model (GFS).  Due to several changes 
in the model configuration and number of members, 
the longest cold season consistent dataset available was 
1 October, 2006 to 31 March 1, 2007.  During this time 
period, the GEFS consisted of 15 total ensemble members 
(individual NWP forecasts): one control run and fourteen 
perturbations using the NCEP Ensemble Transform Bred 
Vector (NCEP 2010, Toth and Kalnay 1993).  The control 
run is the GFS model at 3-km resolution at 0 degrees 
latitude, while the fourteen other ensemble members are 
10- km resolution at 0 degrees latitude2.  The initialization 
time of the forecasts was 0000 UTC each day, and each 
forecast was archived at 95.25-km resolution.  The GEFS 
direct model output consists of forecasts for every 6 hr 
from 0-364 hrs.   The GEFS yields 31 forecast variables 
(Table 1).   Some of the GEFS output variables exhibit 
interdependence, thus three variables are deleted: surface 
pressure because it is interrelated with mean sea level 
pressure, 100- hPa temperature because it is interrelated 
with 2-m temperature, and 100- hPa height because it is 
interrelated with mean sea level pressure.  None of these 
variables is listed in Table 1.   

2 In an ideal setting we would have all ensemble members at the same resolution with consistent perturbations for each 
ensemble member.  This would allow us to train the methods to account for each ensemble member’s individual forecast 
tendencies. For point forecasts, however, interpolating to the same point is adequate.

Variable Variable Description [Units] Levels
Press Pressure [hPa] Surface

PRMSL Pressure reduced to MSL [hPa] Mean Sea Level

RH Relative humidity [%] 2-m, 925hPa, 850hPa, 700hPa, 500hPa

TMP Temperature [K] 2-m,  1000hPa, 850hPa, 700hPa, 500hPa

TMAX Maximum temperature in 6-hr period [K] 2-m

TMIN Minimum temperature in 6-hr period [K] 2-m

U GRD U-comp of wind [m/s] 10-m,  850hPa,  700hPa, 500hPa

V GRD V-comp of wind [m/s] 10-m,  850hPa,  700hPa,  500hPa

HGT Geopotential height [gpm] 1000hPa,  850hPa,  700hPa,  500hPa

FRZR Categorical Freezing Rain [1=yes;0=no] 2-m

ICEP Categorical Ice Pellets [1=yes;0=no] 2-m

SNOW Categorical Snow [1=yes;0=no] 2-m

RAIN Categorical Rain [1=yes;0=no] 2-m

PRCP 6-hr Total Precipitation Accumulation [kg/m2] 2-m

Table 1.  Global Ensemble Forecast System archived variables.
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	 Although the GEFS predictions and co-op data cover 
the entire United States, the Northeast United States 
was the focus of this study.   Within this region, Lake 
Ontario and Lake Erie help generate lake-effect snow, 
which requires a completely different synoptic weather 
pattern than does snowfall caused by baroclinic winter 
storms such as nor’easters or Alberta clippers (Nizol et 
al. 1995).  Therefore, the Northeast United States dataset 
was structured so that it did not include locations that 
generally receive appreciable lake-effect snowfall.   The 
approach described herein could, of course, be applied 
separately to these locations or any other meteorologically 
homogeneous region.
	 The Northeast dataset was split into two subsets 
(herein called levels) based on elevation, with locations 
below 760 m composing level-one and those above 760 m 
composing level-two.  For the locations above 760 m the 
dataset does not include the 92- hPa relative humidity for 
each 6-h forecast interval as that level is frequently below 
the surface.  There are 10,418 snowfall observations in 
the level-one dataset and 762 observations in the level-
two dataset.  Figure 1 plots the observation sites for both 
levels in the Northeast with black asterisks marking the 
locations of the level-one observations and the red plus 
signs marking the locations of the level-two observations.  
There are 417 observation sites in the level-one dataset 
and 16 observation sites in the level-two dataset.
	 In order to compare the GEFS forecasts on their 
95.2 km grid with individual co-op reporting sites, the 
three-nearest neighbor weighting method was used 
to interpolate the GEFS gridded forecasts to the co-op 
locations, in compliance with the method used by NOAA’s 

Fig. 1. Snowfall observation sites, with black asterisks marking 
the locations of the level-one observations and the red plus 
signs marking the locations of the level-two observations.

Fig. 2. Schematic of the predictors that the statistical guidance 
models use to predict the 24-h snowfall accumulation.  

Meteorology Development Laboratory (2009 personal 
communication).  First, the interpolation process 
converted the grid point locations and co-op reporting 
sites from spherical to Cartesian coordinates.  Then, the 
respective distances between the three nearest grid points 
and the co-op reporting sites were computed.  Finally, an 
inverse distance-weighted average of the three nearest 
neighbor grid points was used to calculate a forecast for 
the co-op location.  
	 The datasets consist of GEFS predicted weather 
variables at forecast valid times of 12-18 hrs, 18-24 hrs, 
24-30 hrs, and 30-36 hrs.  These variables were combined 
with latitude, longitude, and elevation of each station as 
predictors for the statistical guidance model as shown 
in Fig. 2.  The statistical guidance methods used these 
variables to predict the total 24 hr snowfall accumulation, 
conditional on snow occurring.  The 1100 UTC o-1700 UTC 
co-op observation is compared with a 12-36ur prediction 
from the GEFS.

3. Statistical Guidance Methods

	 Eight different statistical post-processing methods 
as well as the average of the eight results are used to 
predict snowfall accumulation from the GEFS direct 
output parameters. These methods were selected 
because they represent a broad array of commonly used, 
but fundamentally different, approaches to capturing 
the relationship between a forecast variable and a set of 
predictors.  We used the software package, RapidMiner 
(Rapid-i 2010), to configure and test each method. This 
process is similar to what could be done by operational 
forecasters. The specific configuration for each method 
was optimized by using standard cross-validation 
approaches. Descriptions of each method, the rationale for 
selecting it, and details of choosing specific configurations 
for application appear in the appendix.
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	 A brief listing of the rational and configuration for 
each of the statistical post-processing methods appears 
in Table 2. Each was trained on the control ensemble 
member using a ten-fold cross validation.  We set the 
configuration for each method as described above by 
minimizing the RMSE of the 24 hr snowfall accumulation 
prediction. The methods were next applied to each 
ensemble member individually to form a 15-member 
ensemble of 24 hr snowfall accumulation predictions.  
After the predictions were made by all statistical guidance 
methods, all forecasts below a trace were set to 0.001 m.  
In addition, all forecasts greater than 36 inches, or 0.91 m, 
were reset to that value in order to provide an upper limit 
for snowfall accumulation, thereby eliminating outliers 
that could skew the results.

Method Rationale Application Details
Linear Regression (LR) Basic comparison method Ordinary least squares (OLS)

Least Median Squares 
(LMS)

Basic, but more robust to outliers Median-based error metric

Artificial Neural 
Network (ANN)

Captures nonlinear relationships Multi-layer perceptron with 1 hidden layer, learning 
rate-0.1, momentum=0.1, sigmoid activation function

Radial Basis Function 
Network (RBF)

Captures nonlinear relationships with 
Gaussian radial basis functions

Cluster size of 120 instances with min stand dev=0.1, 
ridge regression with iteration to  

Conjunctive Rule (CR) Produces predictive rules that are 
understandable

3 rules

Support Vector 
Regression (SVR)

Captures nonlinear relationship by 
mapping to high dimensional space

Kernel operation with convergence level=0.001, max 
its=100,000

K-Nearest Neighbor 
(KNN)

Find analogues via clustering 6 clusters for level 1
5 clusters for level 2

Regression Tree (RT) Forms decision nodes with OLS 
regression at each node

Min instance leaf=3, min number class 
variance=0.001, folds for error pruning=3

Consensus (AI) Combine advantages of all techniques Average all of the above

Table 2. Statistical post-processing methods used and their application information.

Level One Level Two
Method MAE (m) Ranking MAE (m) Ranking

LR 0.0298 6 0.0326 6

LMS 0.0318 7 0.0353 8

ANN 0.0236 2 0.0232 2

RBF 0.0370 9 0.0426 9

CR 0.0327 8 0.0327 7

SVR 0.0267 5 0.0323 5

kNN 0.0168 1 0.0186 1

RT 0.0262 4 0.0313 4

AI 0.0250 3 0.0286 3

Table 3 (at right). Mean absolute error for 
all statistical guidance methods on both the 
level-one and level-two datasets. 

4. Results

	 The accuracy of the methods is evaluated using the 
Mean Absolute Error (MAE) of the consensus forecast.  
Ensemble spread calibration is assessed with spread-skill 
relationships and quantile-quantile plots.  

a. Accuracy Testing

	 The ensemble mean consensus forecast is calculated 
by averaging the forecasts from the 15 individual 
ensemble members in order to test the deterministic 
forecast accuracy of the statistical post-processing 
methods. The MAE is averaged over all instances for each 
altitude-based site subsets (i.e. levels).  Table 3 shows the 
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MAE results for the statistical post-processing methods 
for both levels. The k-nearest neighbor method produces 
the lowest MAE of all the methods tested.  The ANN is 
the second best method and the AI consensus is the third 
best method.  SVR and LR rank in the middle of the pack 
for both levels.  The least accurate methods are the CR, 
LMS, and RBF.  A paired two-sample student t-test with 
unequal variances was performed to determine if the 
results are significantly different among the statistical 
post-processing methods.  The null hypothesis is that the 
two sets of forecast errors, one from each of two methods, 
have the same MAE.  A p-value less than 0.05 rejects 
the null hypothesis. Thus, values less than 0.05 indicate 
that the MAE of the forecasting method in the column is 
significantly different from the MAE of the forecasting 
method in the row.  The p-value results for the t-test 
for level-one appear in Table 4 and the results for level-
two are shown in Table 5.  For the level one analysis, all 
methods produce significantly different MAEs than all 
other methods at the 95% confidence level.  For the level-
two dataset, there are only five combinations of methods 
that produced insignificantly different MAEs: LMS and LR; 

Level Two LR LMS ANN RBF CR SVR KNN RT AI
LR - 0 0 0 0 0 0 0 0

LMS - - 0 0 0.0156 0 0 0 0

ANN - - - 0 0 0 0 0 0

RBF - - - - 0 0 0 0 0

CR - - - - - 0 0 0 0

SVR - - - - - - 0 0.0394 0

kNN - - - - - - - 0 0

RT - - - - - - - - 0

AI - - - - - - - - -

Level Two LR LMS ANN RBF CR SVR KNN RT AI
LR - 0.0796 0 0 0 0.8409 0 0.2678 0

LMS - - 0 0 0.0156 0 0 0.0040 0

ANN - - - 0 0 0 0.0062 0 0
RBF - - - - 0.1025 0 0 0 0

CR - - - - - 0 0 0.3121 0

SVR - - - - - - 0 0 0

kNN - - - - - - - 0 0

RT - - - - - - - - 0.0045
AI - - - - - - - - -

Table 4.  Paired two-sample student t-test results for the level-one dataset.  Values less than 0.05 are statistically 
significant at the 95% level.  The 0 values indicate that the values are less than 0.0001.

Table 5.  As for Table 4, except for the level-two dataset.  

SVR and LR; CR and RBF; RT and LR; and RT and SVR. 
	 Thus, the most accurate method, kNN, produces 
significantly better MAEs than all other methods on 
both datasets.  For both levels, four methods produce 
significantly more accurate forecasts than linear 
regression; kNN, ANN, SVR and AI; the MAE for SVR was 
not significantly different from that for LR on the level- 
two dataset, however.

b. Ensemble Spread Tests

	 It is also important to evaluate calibration of the 
ensemble spread given by the statistical post-processing 
methods.  A simple method quantifying this calibration is the 
spread-skill relationship, which measures the correlation 
between the ensemble spread and the ensemble mean 
error (Whitaker and Loughe 1998).  The ensemble spread 
is calculated by finding the standard deviation of the 
ensemble member forecasts.  The ensemble error is the 
absolute difference between the ensemble consensus 
forecast and the snowfall accumulation observation.  An 
ideally calibrated ensemble should show a y = x relation, 
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or a slope of unity, between the ensemble error and 
the ensemble spread.   In practice, any ensemble whose 
spread x is related to the error y by a linear equation of 
the form y = mx+b, could be recalibrated by that equation 
to yield more accurate estimates of the ensemble error.  
Therefore, Tables 6 and 7 show the correlation coefficient, 
slope, and intercept for this linear fit for the level-one and 
level-two datasets respectively.  Values of the correlation 
coefficient closer to 1 indicate a better fit.
	 The method with the highest correlation coefficient 
values for both levels is the k-nearest neighbor method. 
Several other methods have slopes closer to unity but with 
correlation coefficients much less than one, indicating 
a weaker relationship. These spread-skill plots and 
correlation analyses show that the kNN method produces 
the ensemble spread best able to predict the ensemble 
prediction uncertainty via a linear recalibration.
	 Another technique for evaluating both the forecast 
accuracy and uncertainty is the use of quantile-quantile, 

Method R Slope Intercept
LR 0.25 1.20 0.02

LMS 0.06 0.97 0.03

ANN 0.33 1.12 0.02

RBF 0.10 1.28 0.03

CR 0.17 0.52 0.03

SVR 0.32 3.28 0.01

kNN 0.80 1.66 0.00

RT 0.37 0.89 0.02

AI 0.49 4.58 0.01

Table 6.  Correlation coefficient (R), slope and intercept for 
all statistical guidance methods on the level-one dataset.  The 
highest correlation coefficient value is for the kNN method.

Method R Slope Intercept
LR 0.44 0.78 0.02

LMS 0.10 0.24 0.03

ANN 0.55 0.61 0.01

RBF -0.07 1.28 0.03

CR 0.26 0.51 0.04

SVR 0.12 0.29 0.03

kNN 0.90 2.30 0.00

RT 0.39 0.84 0.02

AI 0.47 0.98 0.02

Table 7.  Correlation coefficient (R), slope and intercept for 
all statistical guidance methods on the level-two dataset.  The 
highest correlation coefficient value is for the kNN method.

Fig. 3.  QQ plot for kNN method on the level-one dataset.  The 
dark line is y = x, the colored plus signs represent the different 
ensemble member quantiles, and the colored dashed lines 
connect the first and third quartiles of each ensemble member. 
The forecast and observation quantiles are plotted in meters.

or QQ, plots (Wilks 2005).   A QQ plot is a method for 
comparing two probability distributions by plotting the 
quantiles of the two distributions against each other.  
A QQ plot is computed by independently sorting the 
observations from lowest to highest and the forecasts 
from lowest to highest.  The sorted observations are then 
paired with the independently sorted ensemble forecasts.  
These pairs are then plotted with the observations on 
the abscissa versus the ensemble member forecasts on 
the ordinate, as shown by the + signs on Fig. 3 and 4.  
The different colors represent the different ensemble 
members. 

	 The QQ plot for kNN method on the level-one 
dataset, Fig. 3, has a convex shape compared to the y = 
x line.   This indicates that the kNN method produces 
ensemble members with a probability density function 
that is positively skewed compared to the probability 
density function of the observations (Marzban et al. 
2010), indicating an over-forecast of snowfall when the 
amount is substantial.   For the level-two QQ plot, the 
plotted quantiles below the y = x line indicate that the 
kNN method has a negative forecasting bias for snowfall 
observations greater than 0.1 m.  Although the QQ plots 
for kNN are not ideal, they indicate better performance 
than those of the other methods, which are not shown for 
brevity. In addition, these QQ plots can be used to improve 
operational forecasting.  For example, at a location site 
above 760 m (level two), if the kNN method predicts 0.2 
m for an impending snowstorm, the QQ plot shows that 
the forecasts tend to be biased low, and therefore, the 
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skill relationships and QQ plots were used to examine 
the calibration of ensemble spread.  Two methods, the 
kNN and ANN, showed potential improvements over the 
AI consensus in terms of accuracy, with the kNN method 
producing the best ensemble spread calibration (i.e. 
uncertainty estimate) of all the methods tested. 
	 The results demonstrate that the kNN statistical 
post-processing method of predicting 2-hr snowfall 
accumulation provides more accurate deterministic 
forecasts than any of the other methods or the consensus 
of all methods.   The MAE of the kNN method was 
significantly smaller than that for the second most 
accurate method, the ANN.   None of the other methods, 
including the RBF network and SVR, performed as well 
as did the kNN or the ANN.  The disadvantage of the RBF 
network and SVR is that both methods give every predictor 
the same weight because they are equally valued in the 
distance computation. It is somewhat surprising that the 
consensus method (AI) did not perform better. That is 
likely due to the poor performance of RBF and CR that is 
averaged into it.
	 To evaluate calibration of the ensemble spread as a 
measure of forecast uncertainty, two methods were used: 
spread-skill relationships and quantile-quantile (QQ) 
plots.  The kNN method produces the highest correlation 
between ensemble spread and ensemble error for 
both level-one and level-two.  Thus, its spread can be 
calibrated via a linear transformation to produce useful 
error estimates (Kolczynski et al. 2009).  In addition, the 
QQ plots confirm that the kNN method produces the most 
appropriately calibrated ensemble and illustrates ways to 
calibrate the forecast more accurately. 
	 In summary, the kNN statistical post-processing 
method outperforms all of the other methods in terms 
of both deterministic forecast accuracy and producing 
ensemble spread that is linearly related to forecast 
uncertainty. Thus, the kNN method appears to be the 
best statistical post-processing method for forecasting 
24-h snowfall accumulation for this dataset.  Note that 
this method essentially identifies the closest analogue 
events and use that information to correct the prediction 
for similar events by similar amounts.  These findings are 
consistent with those of Delle Monache et al. (2011) for 
direct variables.
	 This study examined a 24-h snowfall accumulation 
with a forecast period of 12-36 h from model initialization.  
Examining these methods at longer lead times would 
help confirm the rankings of the methods.  The support 
vector regression technique required extensive computer 
resources.  There are many versions of the support vector 
regression technique, but the extensive computer time 
required to test each limited the number of different 
variations tested.  It may be possible to combine SVR with 

Fig. 4.  QQ plot for kNN method on the level-two dataset.  The 
dark line is y = x, the colored plus signs represent the different 
ensemble member quantiles, and the colored dashed lines 
connect the first and third quartiles of each ensemble member. 
The forecast and observation quantiles are plotted in meters.

forecaster should predict snowfall to be greater than 
0.2m.  
	 The QQ plots can also be used to assess uncertainty.  
The dashed lines connect the first and third quartiles of 
each ensemble member.  An ideal ensemble would have 
these lines for each ensemble member lie parallel to and 
centered on the y = x line.  The QQ plots for the kNN on 
level-one show that the slope of these lines are less than 
y = x, but are clustered close together.  For level-two, the 
kNN method produces lines clustered just above the y = x 
line.  Both indicate that there are differences among the 
ensemble members, yet they show similar relationships 
between the ensemble member forecasts and the 
observations.  None of the other methods, which are not 
shown for brevity, produce these quartile lines as close to 
the y = x line and clustered together.

5. Conclusions

	 Eight different post-processing statistical guidance 
methods and a consensus of these methods were tested 
for producing 24 hr snowfall accumulation forecasts 
from direct model output of the GEFS.   These artificial 
intelligence methods were trained to reduce the error 
of the control ensemble member and then applied to 
each ensemble member individually.  An average of 
these individual ensemble members then forms a single 
consensus forecast that becomes a deterministic snowfall 
accumulation forecast.  The MAE of the consensus 
forecast was used to assess forecast accuracy.  Spread-
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a technique that preprocesses the data to allow for faster 
computations and potentially more accurate predictions.  
In addition, a performance- or regime-weighted average 
of these statistical post-processing methods may improve 
the forecast accuracy and spread of the ensemble.

For an operational meteorologist, these results 
are significant because not only does the kNN method 
produce the most accurate results with the best ensemble 
calibration, but the method is also fast and efficient to 
implement for real-time applications.  Free software tools 
such as Weka (Witten and Frank 2005) and RapidMiner 
(Rapid-i 2010) allow for local implementation with little 
or no programming.  Alternatively this method could be 
implemented at the national level as part of the MOS suite.

Future work will involve nonlinearly calibrating the 
kNN method to produce better model error estimates.  
The QQ plot for the kNN method on the level-one dataset 
indicates that the probability density function of the 
forecasts is negatively skewed compared to the probability 
density function of the observations.  A nonlinear 
calibration method could be devised to transform the 
probability density function of the forecasts to more 
accurately match the probability density function of the 
observations, which would lead to better ensemble spread 
estimates.  For the level-two trained kNN method, the QQ 
plot showed negative forecasting bias for instances greater 
than 0.1 m.  A non-linear equation could be developed to 
correct this deficiency as well.  
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Fig. A1. Schematic of an Artificial Neural Network.  

Appendix

	 The details of why we chose each method, how it was 
optimized within RapidMiner and its application details 
are described in this appendix.

A. Linear Regression (LR)

	 Linear Regression (LR) is perhaps the simplest 
statistical post-processing method.   It determines the 
relationship between predictand and predictors by fitting 
a hyperplane [i.e., multi-input linear equation (Glahn and 
Lowry 1972)] that minimizes the root mean squared error 
(RMSE).  We test LR to provide a baseline for comparison 
of the remaining techniques, many of which support non-
linear relationships.  

B. Least Median Squares (LMS)

	 In a slight variation of linear regression, the Least 
Median Squares (LMS) method (Rousseeuw and Annick 
1987) is assessed.  It is expected to be more robust in the 
face of outliers than LR because it iteratively minimizes 
the median of the squares of residuals from the regression 
line instead of minimizing the mean of the squared 
residuals. 

C. Artificial Neural Network (ANN)

	 The first nonlinear statistical guidance method 
used here is an Artificial Neural Network (ANN), which 
is depicted in Fig. A1 (Rosenblatt 1958).  The goal is 
to improve upon LR and LMS by capturing nonlinear 
relationships between the predictand and the predictors.  
This simplified diagram shows four predictors fed into 
one hidden layer consisting of five nodes.   Each node 
includes a LR whose output layer feeds an activation function 
that converts its output into the range from 0 to 1, much as in 
logistic regression (Reed and Marks 1990, Rosenblatt 1958).  
These five nodes are connected to the output layer, which 
combines these intermediate results using LR to produce 
the final prediction.  This approach allows different nodes 
to focus on different aspects of the forecast problem with 
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subsequent layers working to combine those elements 
into a final forecast.  The use of an activation function after 
all but the final regression is critical to ANN’s ability to 
fit nonlinear relationships.  While Fig. A1 depicts an ANN 
with only four predictors and five nodes in the hidden 
layer, our ANN configurations include all of the predictors 
listed in Table 1 and incorporate many more hidden layer 
nodes.
 	 The ANN used in this study is a feed-forward Neural 
Network trained by a back-propagation algorithm, also 
known as a multi-layer perceptron (Rosenblatt 1958).  
This ANN configuration includes one hidden layer, a 
learning rate of 0.1 and a momentum of 0.1.  The back-
propagating algorithm goes through 500 training cycles 
to find the optimal set of model weights.    For level-one, 
the hidden layer contains 30 nodes, while for level-
two the ANN contains 58 nodes.   These configurations 
are chosen because they produce the lowest RMSE on 
the control ensemble member using a three-fold cross-
validation with 50 training cycles.  Although ten-fold 
cross validation with 500 training cycles is generally used 
(Witten and Frank 2005), three-fold cross validation with 
50 training cycles is used here for finding the optimal 
configuration because it still generalizes well and is more 
computationally efficient.   Increasing the momentum or 
learning rate increased the RMSE, and decreasing these 
parameter values produced statistically insignificant 
improvements in RMSE.  The addition of a second hidden 
layer or decay function (to drive the LR coefficients for 
unnecessary predictors towards zero) also increased 
the RMSE; therefore, neither were used in the final 
configuration.     The activation function is the standard 
sigmoid function, 
      
                                                                            
				    (A1)
where Y is the snowfall prediction for instance x.    

D. Radial Basis Function Network (RBF)

	 Another method similar to the ANN is a Radial Basis 
Function (RBF) network (Witten and Frank 2005).  The 
key difference between an ANN and an RBF network is 
the way in which the hidden layers perform computation.  
The RBF network uses Gaussian radial basis functions as 
the activation functions. 

 (A2)
in which Y is the function’s output for input vector (i.e. 
predictor list) x and node i, c1 is the center vector for 
node i (i.e. the cluster centroid for those training cases 
contributing to the node), and is a weight. The radius, 

x - c1, is the distance from the center of the hypersphere 
(i.e. cluster of cases contributing to that node) to the 
instance x. The Gaussian radial basis function then 
predicts the output P(x), or the snowfall accumulation as
       
                                                (A3)

Here N is the number of nodes in the hidden layer and the 
three weights a1, c1, and , are tuned to optimize the fit 
between the predictions and the training data.  In this RBF 
algorithm, the k-means clustering algorithm computes 
the basis functions, which are normalized to sum to one 
before being fed to an LR model. (Witten and Frank 2005).  
The RBF network with three-fold cross validation on the 
control ensemble member for level-one was tested with 
various cluster sizes from 2 to 300 instances in order to 
determine the optimal configuration.  Figure A2 plots the 
RMSE of the RBF network for the different cluster sizes.  
The RMSE decreases noticeably until approximately 120 
instances per clusters and then becomes approximately 
level.  Therefore, a cluster size of 120 instances are used 
in the RBF network.  
	

Fig. A2.  Sensitivity study to determine the optimal cluster size 
for the RBF network.

	 The minimum standard deviation for the clusters 
was set to 0.1 and the training iterations stop when 
the value for the ridge regression is less than 1.0 x 10-8, 
because these values produced the lowest RMSE for the 
RBF configuration with a cluster size of 120 instances.   
Ridge regression was used because it avoids the issue of 
predictor collinearity by using a penalized least squares 
procedure (Witten and Frank 2005). For level-two, 75 
instances per cluster were used in the RBF network 
because that number produced the lowest RMSE with a 
three-fold cross validation on the level-two dataset for the 
control ensemble member.  Cluster sizes greater than 75 
instances result in an exponential increase of the RMSE, 
which was likely the result of overfitting.

 
E. Conjunctive Rule (CR)

	 A Conjunctive Rule (CR) is a machine learning 
algorithm that deduces a set of predictive rules involving 
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the classes while maximizing the separation between the 
closest instances in the classes.  These closest instances 
in this mapped space are the support vectors, which are 
then used to reduce the dimensionality of the problem.  
These support vectors constitute a reduced set of basis 
functions, that when convolved with an appropriate 
kernel function, allow compression of the problem into a 
smaller number of parameters.  Thus, overfitting is rarely 
an issue with support vectors because the support vectors 
describe the maximum margin hyperplane and the other 
instances do not affect the hyperplane.  In order to form 
a prediction, a dot product between the test instance and 
every support vector (projected onto the kernel function) 
is calculated to fit a linear regression in the higher 
dimensional nonlinearly mapped space. This mapping 
process can be computationally expensive when there 
are many predictors, as is the situation with the snowfall 
prediction dataset of over 100 predictors. 
	 We apply the support vector regression method using 
a kernel operator that directly computes the dot product 
between data point vectors, a convergence epsilon of 
0.0010, and a maximum of 100,000 iterations.  This 
configuration is chosen because it provides the lowest 
RMSE on the three-fold cross validation compared to other 
convergence epsilons, maximum number of iterations, 
and types of kernels.  

G. K-Nearest Neighbor (kNN)

	 A k-nearest neighbor (kNN) algorithm works by 
searching for k historical analogs to the current predictor 
values and then using the consensus predictand value 
from those analogs as the prediction.  The kNN method 
first normalizes the predictors and then finds the k 
training instances that are closest in Euclidean distance 

the predictors (Witten and Frank 2005).   Conjunctive 
rules are learned by determining conditions shared by 
the examples.  A rule consists of antecedents “AND”ed 
together and the consequent for the regression (Witten 
and Frank 2005).   The consequent is the mean for the 
numeric predictors in the dataset.  Uncovered test 
instances are assigned the default mean value of the 
uncovered training instances.  The algorithm selects an 
antecedent by computing the information gain  from each 
antecedent and then prunes the generated rule.  Pruning 
is done with a reduced-error pruning technique that uses 
the weighted average of the mean-squared errors on the 
pruned data to determine the amount of pruning required.  
In regression problems such as snowfall accumulation 
prediction, the information gain is the weighted average 
of the mean-squared errors of both the data covered and 
the data not covered by the rule. As a simple example, a 
conjunctive rule set for predicting whether freezing rain 
is possible is as follows.  If the surface temperature is less 
than 0°C, the 850-hPA temperature is greater than 0°C, 
and the minimum relative humidity is greater than 99%, 
then freezing rain would be predicted. 
	 The advantage of this approach is that the rules are 
readily understood by the human forecaster.  A limitation 
of conjunctive rules occurs when particular outcomes do 
not have a single set of necessary and sufficient conditions.  
Because this situation arises with snowfall accumulation 
in the Northeast, conjunctive rules would not be expected 
to perform as well in this study as do some of the other 
non-linear methods.  
	 The results for three-fold cross validation on the 
control ensemble member with the level-one dataset 
produces no significant difference between using 2, 3, 5, 
10, and 25 rules, with all RMSE values between 0.0566 
and 0.0571 meters.  We opted to use three rules in our 
final configuration. 

F. Support Vector Regression (SVR)

	 Another non-linear method tested here is support 
vector regression (SVR) (Smola and Scholkopf 2004; 
Trefalis et al. 2003; Richman et al. 2009).  SVR is essentially 
a linear regression applied in a higher dimensional space 
that incorporates nonlinear relationships. The key to SVR 
is to transform the input (i.e. predictors) into a new space 
using a nonlinear mapping. One then must define the 
support vectors by fitting a maximum margin hyperplane 
that defines the support vectors (Witten and Frank 2005; 
Marzban 2009).  These support vectors are data instances 
that are closest to this hyperplane.  Figure A3 illustrates 
the concept of a support vector. In this example, the 
instances are separated into two classes, labeled Class 1 
and Class 2.  The maximum margin hyperplane separates 

Fig. A3.  Schematic of a maximum margin hyperplane and 
support vectors separating two classes in support vector 
classification.  The axes depicted here are in the transformed 
space.
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to the given test instance (Witten and Frank 2005).   A 
consensus forecast is formed from the distance-weighted 
average of these k-nearest neighbor’s predictand values.  
The number k of analogs is selected using leave-one-out 
cross-validation, given an upper limit for k of 100 with the 
optimal value being 6 for the level-one dataset and 5 for 
the level-two dataset.   
	 Figure A4 illustrates how the k-nearest neighbor 
algorithm works.   All dots correspond to instances 
mapped onto a high-dimensional space.  The center 
orange dot corresponds to the test instance that the 
k-nearest neighbor method predicts.   For k = 10, the 
algorithm searches for the closest ten instances in this 
space, which is represented by all the dots inside the 
circle.  The method then computes the distance-weighted 
average snowfall accumulation for these ten instances.  In 
this diagram, out of the ten closest instances, eight have 
0.2 m accumulations, one has a 0.1 m accumulation, and 
one has a 0.3 m accumulation.  Thus, the forecast given by 
the k-nearest neighbor method would be 0.2 m, assuming 
the 0.1 m and 0.3 m observations are the same distance 
from the test instance. 

H. Regression Tree (RT)

	 The final non-linear method tested is the 
Regression Tree (RT, Witten and Frank 2005).  An RT is 
formed by building a decision tree in which the leaf nodes 
contain the numeric value that is the average outcome, i.e. 
snowfall accumulation, of those instances falling in that 
leaf.  The term regression signifies that the tree produces 
a numerical prediction rather than a categorical forecast 
as in a traditional decision tree.  This algorithm uses 
information gain/variance reduction to select branches 
and prunes the tree using reduced-error pruning. The 
reduced-error pruning is performed with back-fitting.  
	 A simple example of a regression tree is shown 
in Fig. A5.   The regression tree in this figure has only 
three predictors; temperature, relative humidity, and 
accumulated precipitation. Each node, which are 
represented as boxes in the figure, determines the path 
to traverse down the tree.  When the instance reaches the 
bottom of the tree a regression equation is used to predict 
the snowfall accumulation.
	 We determined a configuration that produced the 
lowest error on three-fold cross validation: the minimum 
number of instances per leaf was set at three, the value 
used to minimize the numeric class variance to determine 

Fig. A5.  Simple diagram of the process of a regression tree 
using three predictors; temperature, relative humidity, 
and predicted accumulated liquid equivalent rainfall. 
Regression equations are used at each leaf to predict snowfall 
accumulation.

Fig. A4. Illustration of the k-nearest neighbor algorithm.  All 
dots correspond to instances mapped on a high dimensional 
space.  For k = 10, the distance weighted average of the ten 
instances inside the circle are used to predict the test instance 
in orange.

the appropriate split  was determined to be 0.001, and the 
number of folds for reduced error pruning was found to 
be three. 

I. Consensus (AI)

	 Finally, an average of the eight Artificial Intelligence 
(AI) methods is used to produce a consensus forecast.   
These average forecasts were produced by averaging each 
AI method forecast for each instance and each ensemble 
member.  


