
Abstract

The accuracy of snowfall accumulation forecasts has widespread economic and safety consequences.  
Due to the complex structure and dynamics of winter weather systems, snowfall accumulation forecasts 
tend to have a large degree of uncertainty associated with them.  Numerical weather prediction (NWP) 
ensemble prediction systems were developed specifically to address the uncertainty in weather forecasts.  
An accurate deterministic forecast as well as an estimate of the uncertainty is of utmost importance to the 
public; therefore, the ensemble mean is often used as the deterministic forecast and the ensemble spread as 
the basis for a forecast uncertainty estimate.  This approach works for weather parameters directly forecast 
by the model; however, snowfall accumulation is not directly forecast by the Global Ensemble Forecast 
System (GEFS).  Therefore this study examines nine artificial intelligence methods for producing a 24-h 
snowfall accumulation prediction from the parameters directly output from the GEFS.  These methods are 
then examined by their deterministic forecast skill using the mean absolute error of the ensemble mean 
forecast as well as the degree to which the ensemble spread corresponds to forecast uncertainty, which is 
examined by spread-skill relationships and quantile-quantile plots.  Out of the nine methods—an artificial 
neural network, linear regression, least median squares regression, support vector regression, radial basis 
function network, conjunctive rule, k-nearest neighbor, regression tree, and an average of these methods—
the k-nearest neighbor method produces significantly more accurate forecasts as well as the best calibrated 
ensemble spread.  This postprocessing method would be appropriate for operational forecasting.
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1. Introduction

	 Meteorologists	 face	 the	 difficult	 task	 of	 forecasting	
complex winter storm systems that can affect millions of 
people.  More than 85,000 automobile crashes occurred on 
average each year for the period 1995-2001 nationwide 
when road conditions were reported as either snowy 
and slushy or icy (Kocin and Uccellini 2005).  On average 
1270 fatalities per year occur during snow/ice road 
conditions (Kocin and Uccellini 2005).  The most severe 
winter storms also can have an extensive impact on the 
economy.  The National Climatic Data Center (NCDC) 
estimated the March 1993 and January 1996 storms 
each resulted in billions of dollars in damage (Kocin 
and Uccellini 2005).  Winter weather forecasts provide 
state and local departments of transportation with the 
information required to prepare for these winter weather 
events	 efficiently	 and	 safely.	 	 At	 the	 2005	United	 States	
Weather	Research	Program	Workshop,	Ralph	et	al.	(2005)	
stated “one effort should focus on winter storms along 
the East Coast of the United States, with freezing rain, 
coastal	cyclones	(e.g.,	nor’easters),	heavy	snow,	and	lake	
effect snow as priorities.” Thus, accurate winter weather 
forecasts are valuable for public safety and more research 
is warranted to improve these predictions, particularly 
for this region.
 Forecasting snowstorms is a multifaceted problem 
presenting many challenges.  One challenge is the 
difficulty	 of	 obtaining	 accurate	 and	 precise	 snowfall	
measurements, due to blowing and drifting that depends 
on the location and the surface of the observation, melting, 
compaction, mixed precipitation events, and how often 
the	 measurement	 is	 taken	 (Doesken	 and	 Leffler	 2000).		
Without consistent and accurate snowfall accumulation 
observations,	 it	 is	 difficult	 to	 evaluate	 the	 performance	
of any forecast system.  Another challenge in snowfall 
forecasting is that both small and large snowfall events 
can have similar weather conditions prior to accumulating 
snowfall.  
 A major development in weather forecasting is the 
advent of meteorological ensembles. Ensemble forecasts 
represent a set of possible realizations of future states of 
the atmosphere.  The mean of the ensemble is typically 
a more accurate forecast than that of a single member 
(Woodcock	 and	 Engel	 2005).	 	 Grimit	 and	 Mass	 (2002)	
show that a correlation exists between ensemble spread 
and forecast uncertainty, thus providing the forecaster 
with valuable uncertainty information.  Advanced 
statistical post-processing techniques recently have been 
developed and implemented in order to improve both 
the calibration of uncertainty information and the overall 

accuracy	of	NWP	ensembles	(Kolczynski	et	al.	2009;	Delle	
Monache et al. 2011).  
 Statistical post-processing methods such as model 
output statistics (MOS) typically improve the prediction 
of	direct	variables	(Glahn	and	Lowry	1972)	and	has	been	
applied	to	ensembles	as	well	(Woodcock	and	Engle	2005).	
Here we wish to explore whether other statistical post-
processing techniques would yield forecast improvement 
when applied to an ensemble for an indirect variable, 
specifically	 snowfall	 accumulation	 prediction.	 	 Different	
methods of post-processing ensemble forecasts in 
order to improve weather prediction has been studied 
in	 various	 contexts	 (Raftery	 et	 al.	 2005;	 Greybush	 et	
al.	 2008;	 Glahn	 et	 al.	 2009).	 Although	 many	 of	 these	
advanced statistical post-processing methods have been 
shown to improve general forecasting, only recently have 
there been attempts to use post-processing to improve 
snowfall accumulation predictions.  Cosgrove and Sfanos 
(2004) apply MOS techniques to forecast the conditional 
probability of snow and the snowfall amount exceeding 
a	specific	threshold,	given	that	snowfall	occurs,	using	the	
Global	Forecast	System	(GFS)	model.		
 The goal of this study is to test the ability of advanced 
statistical post-processing methods to improve both 
the overall accuracy and the ensemble calibration of 
the forecast uncertainty information for 24-h snowfall 
accumulation	 predictions	 from	 the	 Global	 Ensemble	
Forecast	System	(GEFS).	Improving	the	forecast	accuracy	
and ensemble uncertainty calibration is vital for 
operational meteorologists who wish not only to predict 
snowfall accumulation more accurately, but also to 
quantitatively address the uncertainty in the prediction.  
Nine different statistical post-processing methods are 
tested for producing 24-h snowfall accumulation forecasts 
from	the	GEFS	direct	model	output.	 	These	methods	are	
trained to reduce the error of a single “control” ensemble 
member and then applied to each ensemble member 
individually1. These individual ensemble members are 
then used to produce a single consensus forecast of 
snowfall	accumulation	at	specific	points.		The	objective	is	
to determine if it would be prudent to use any of these 
methods operationally.  Several techniques are used to 
examine the calibration of ensemble spread.  The accuracy 
of both results is then evaluated on two separate datasets 
that are split based on the observation’s altitude. 
	 In	section	2,	the	GEFS	and	the	cooperative	observing	
network	are	described.		The	statistical	guidance	methods	
used	 in	 this	 study	 are	 explained	 in	 section	 3.	 	 In	 the	
following section results are summarized and discussed.  
Conclusions and prospects for future research are 
discussed in section 5.

1 This approach is appropriate because all members of the GFS ensemble have the same physics and differ only in initial 
conditions.
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2. Data

a. Cooperative Observing Network

	 In	 order	 to	 test	 the	 validity	 of	 any	 forecast	 system,	
or indeed, to create a consistent, reliable statistical 
post-processing system, an accurate observing system 
is necessary (Allen 2001).  This issue poses particular 
challenges	 for	 snowfall	 accumulation	 prediction.	 	 In	
order to achieve adequate spatial coverage, the NCDC 
Cooperative Summary of the Day (co-op) reports are used 
as the snowfall observations.  The co-op stations do not 
report	at	a	fixed	time	each	day;	thus	in	order	to	maintain	
consistency and to provide a valid test of the statistical 
guidance methods as described by Allen (2001), only 
those	 sites	when	 observations	 are	 taken	 between	 1100	
Coordinated Universal Time (UTC) and 1700 UTC are 
retained.  This restriction allows us to compare the 
observations to 24-h snowfall accumulation forecasts 
valid for the period ending at 1200 UTC.  Moreover, most 
of the observations are recorded between 1100 UTC and 
1700 UTC so little data is lost by the imposition of this 
restriction  This methodology is the same as that used by 
Cosgrove and Sfanos (2004).  Only the co-op observations 
with a snowfall measurement of a trace or more are 
retained. The resulting dataset spans the period from 1 
October 2006 to 31 March 2007.  

b. Global Ensemble Forecast System

 The National Center for Environmental Prediction 
(NCEP)	 Global	 Ensemble	 Forecast	 System	 (GEFS)	 uses	
the	Global	Spectral	Model	(GFS).		Due	to	several	changes	
in	 the	 model	 configuration	 and	 number	 of	 members,	
the longest cold season consistent dataset available was 
1 October, 2006 to 31 March 1, 2007.  During this time 
period,	the	GEFS	consisted	of	15	total	ensemble	members	
(individual NWP forecasts): one control run and fourteen 
perturbations using the NCEP Ensemble Transform Bred 
Vector (NCEP 2010, Toth and Kalnay 1993).  The control 
run	 is	 the	 GFS	 model	 at	 3-km	 resolution	 at	 0	 degrees	
latitude, while the fourteen other ensemble members are 
10-	km	resolution	at	0	degrees	latitude2.  The initialization 
time of the forecasts was 0000 UTC each day, and each 
forecast	was	archived	at	95.25-km	resolution.		The	GEFS	
direct model output consists of forecasts for every 6 hr 
from	 0-364	 hrs.	 	 The	 GEFS	 yields	 31	 forecast	 variables	
(Table	 1).	 	 Some	 of	 the	 GEFS	 output	 variables	 exhibit	
interdependence, thus three variables are deleted: surface 
pressure because it is interrelated with mean sea level 
pressure, 100- hPa temperature because it is interrelated 
with 2-m temperature, and 100- hPa height because it is 
interrelated with mean sea level pressure.  None of these 
variables is listed in Table 1.   

2 In an ideal setting we would have all ensemble members at the same resolution with consistent perturbations for each 
ensemble member.  This would allow us to train the methods to account for each ensemble member’s individual forecast 
tendencies. For point forecasts, however, interpolating to the same point is adequate.

Variable Variable Description [Units] Levels
Press Pressure [hPa] Surface

PRMSL Pressure reduced to MSL [hPa] Mean Sea Level

RH Relative humidity [%] 2-m, 925hPa, 850hPa, 700hPa, 500hPa

TMP Temperature [K] 2-m,  1000hPa, 850hPa, 700hPa, 500hPa

TMAX Maximum temperature in 6-hr period [K] 2-m

TMIN Minimum temperature in 6-hr period [K] 2-m

U GRD U-comp of wind [m/s] 10-m,  850hPa,  700hPa, 500hPa

V GRD V-comp of wind [m/s] 10-m,  850hPa,  700hPa,  500hPa

HGT Geopotential height [gpm] 1000hPa,  850hPa,  700hPa,  500hPa

FRZR Categorical Freezing Rain [1=yes;0=no] 2-m

ICEP Categorical Ice Pellets [1=yes;0=no] 2-m

SNOW Categorical Snow [1=yes;0=no] 2-m

RAIN Categorical Rain [1=yes;0=no] 2-m

PRCP 6-hr Total Precipitation Accumulation [kg/m2] 2-m

Table 1. 	Global	Ensemble	Forecast	System	archived	variables.
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	 Although	the	GEFS	predictions	and	co-op	data	cover	
the entire United States, the Northeast United States 
was	 the	 focus	 of	 this	 study.	 	 Within	 this	 region,	 Lake	
Ontario	 and	 Lake	 Erie	 help	 generate	 lake-effect	 snow,	
which requires a completely different synoptic weather 
pattern than does snowfall caused by baroclinic winter 
storms such as nor’easters or Alberta clippers (Nizol et 
al. 1995).  Therefore, the Northeast United States dataset 
was structured so that it did not include locations that 
generally	 receive	 appreciable	 lake-effect	 snowfall.	 	 The	
approach described herein could, of course, be applied 
separately to these locations or any other meteorologically 
homogeneous region.
 The Northeast dataset was split into two subsets 
(herein called levels) based on elevation, with locations 
below 760 m composing level-one and those above 760 m 
composing level-two.  For the locations above 760 m the 
dataset does not include the 92- hPa relative humidity for 
each 6-h forecast interval as that level is frequently below 
the surface.  There are 10,418 snowfall observations in 
the level-one dataset and 762 observations in the level-
two dataset.  Figure 1 plots the observation sites for both 
levels	 in	the	Northeast	with	black	asterisks	marking	the	
locations of the level-one observations and the red plus 
signs	marking	the	locations	of	the	level-two	observations.		
There are 417 observation sites in the level-one dataset 
and 16 observation sites in the level-two dataset.
	 In	 order	 to	 compare	 the	 GEFS	 forecasts	 on	 their	
95.2	 km	 grid	 with	 individual	 co-op	 reporting	 sites,	 the	
three-nearest neighbor weighting method was used 
to	 interpolate	 the	 GEFS	 gridded	 forecasts	 to	 the	 co-op	
locations, in compliance with the method used by NOAA’s 

Fig. 1. Snowfall	observation	sites,	with	black	asterisks	marking	
the locations of the level-one observations and the red plus 
signs	marking	the	locations	of	the	level-two	observations.

Fig. 2. Schematic of the predictors that the statistical guidance 
models use to predict the 24-h snowfall accumulation.  

Meteorology Development Laboratory (2009 personal 
communication).  First, the interpolation process 
converted the grid point locations and co-op reporting 
sites from spherical to Cartesian coordinates.  Then, the 
respective distances between the three nearest grid points 
and the co-op reporting sites were computed.  Finally, an 
inverse distance-weighted average of the three nearest 
neighbor grid points was used to calculate a forecast for 
the co-op location.  
	 The	 datasets	 consist	 of	 GEFS	 predicted	 weather	
variables at forecast valid times of 12-18 hrs, 18-24 hrs, 
24-30 hrs, and 30-36 hrs.  These variables were combined 
with latitude, longitude, and elevation of each station as 
predictors for the statistical guidance model as shown 
in Fig. 2.  The statistical guidance methods used these 
variables to predict the total 24 hr snowfall accumulation, 
conditional on snow occurring.  The 1100 UTC o-1700 UTC 
co-op observation is compared with a 12-36ur prediction 
from	the	GEFS.

3. Statistical Guidance Methods

 Eight different statistical post-processing methods 
as well as the average of the eight results are used to 
predict	 snowfall	 accumulation	 from	 the	 GEFS	 direct	
output parameters. These methods were selected 
because they represent a broad array of commonly used, 
but fundamentally different, approaches to capturing 
the relationship between a forecast variable and a set of 
predictors.	 	We	 used	 the	 software	 package,	 RapidMiner	
(Rapid-i	2010),	 to	 configure	and	 test	each	method.	This	
process is similar to what could be done by operational 
forecasters.	 The	 specific	 configuration	 for	 each	method	
was optimized by using standard cross-validation 
approaches. Descriptions of each method, the rationale for 
selecting	it,	and	details	of	choosing	specific	configurations	
for application appear in the appendix.
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	 A	 brief	 listing	 of	 the	 rational	 and	 configuration	 for	
each of the statistical post-processing methods appears 
in Table 2. Each was trained on the control ensemble 
member using a ten-fold cross validation.  We set the 
configuration	 for	 each	 method	 as	 described	 above	 by	
minimizing the RMSE of the 24 hr snowfall accumulation 
prediction. The methods were next applied to each 
ensemble member individually to form a 15-member 
ensemble of 24 hr snowfall accumulation predictions.  
After the predictions were made by all statistical guidance 
methods, all forecasts below a trace were set to 0.001 m.  
In	addition,	all	forecasts	greater	than	36	inches,	or	0.91	m,	
were reset to that value in order to provide an upper limit 
for snowfall accumulation, thereby eliminating outliers 
that	could	skew	the	results.

Method Rationale Application Details
Linear Regression (LR) Basic comparison method Ordinary least squares (OLS)

Least Median Squares 
(LMS)

Basic, but more robust to outliers Median-based error metric

Artificial Neural 
Network (ANN)

Captures nonlinear relationships Multi-layer perceptron with 1 hidden layer, learning 
rate-0.1, momentum=0.1, sigmoid activation function

Radial Basis Function 
Network (RBF)

Captures nonlinear relationships with 
Gaussian radial basis functions

Cluster size of 120 instances with min stand dev=0.1, 
ridge regression with iteration to  

Conjunctive Rule (CR) Produces predictive rules that are 
understandable

3 rules

Support Vector 
Regression (SVR)

Captures nonlinear relationship by 
mapping to high dimensional space

Kernel operation with convergence level=0.001, max 
its=100,000

K-Nearest Neighbor 
(KNN)

Find analogues via clustering 6 clusters for level 1
5 clusters for level 2

Regression Tree (RT) Forms decision nodes with OLS 
regression at each node

Min instance leaf=3, min number class 
variance=0.001, folds for error pruning=3

Consensus (AI) Combine advantages of all techniques Average all of the above

Table 2. Statistical post-processing methods used and their application information.

Level One Level Two
Method MAE (m) Ranking MAE (m) Ranking

LR 0.0298 6 0.0326 6

LMS 0.0318 7 0.0353 8

ANN 0.0236 2 0.0232 2

RBF 0.0370 9 0.0426 9

CR 0.0327 8 0.0327 7

SVR 0.0267 5 0.0323 5

kNN 0.0168 1 0.0186 1

RT 0.0262 4 0.0313 4

AI 0.0250 3 0.0286 3

Table 3 (at right). Mean absolute error for 
all statistical guidance methods on both the 
level-one and level-two datasets. 

4. Results

 The accuracy of the methods is evaluated using the 
Mean Absolute Error (MAE) of the consensus forecast.  
Ensemble	spread	calibration	is	assessed	with	spread-skill	
relationships and quantile-quantile plots.  

a. Accuracy Testing

 The ensemble mean consensus forecast is calculated 
by averaging the forecasts from the 15 individual 
ensemble members in order to test the deterministic 
forecast accuracy of the statistical post-processing 
methods. The MAE is averaged over all instances for each 
altitude-based site subsets (i.e. levels).  Table 3 shows the 
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MAE results for the statistical post-processing methods 
for	both	levels.	The	k-nearest	neighbor	method	produces	
the lowest MAE of all the methods tested.  The ANN is 
the	second	best	method	and	the	AI	consensus	is	the	third	
best	method.		SVR	and	LR	rank	in	the	middle	of	the	pack	
for both levels.  The least accurate methods are the CR, 
LMS, and RBF.  A paired two-sample student t-test with 
unequal variances was performed to determine if the 
results	 are	 significantly	 different	 among	 the	 statistical	
post-processing methods.  The null hypothesis is that the 
two sets of forecast errors, one from each of two methods, 
have the same MAE.  A p-value less than 0.05 rejects 
the null hypothesis. Thus, values less than 0.05 indicate 
that the MAE of the forecasting method in the column is 
significantly	 different	 from	 the	 MAE	 of	 the	 forecasting	
method in the row.  The p-value results for the t-test 
for level-one appear in Table 4 and the results for level-
two are shown in Table 5.  For the level one analysis, all 
methods	 produce	 significantly	 different	 MAEs	 than	 all	
other	methods	at	the	95%	confidence	level.		For	the	level-
two	dataset,	there	are	only	five	combinations	of	methods	
that	produced	insignificantly	different	MAEs:	LMS	and	LR;	

Level Two LR LMS ANN RBF CR SVR KNN RT AI
LR - 0 0 0 0 0 0 0 0

LMS - - 0 0 0.0156 0 0 0 0

ANN - - - 0 0 0 0 0 0

RBF - - - - 0 0 0 0 0

CR - - - - - 0 0 0 0

SVR - - - - - - 0 0.0394 0

kNN - - - - - - - 0 0

RT - - - - - - - - 0

AI - - - - - - - - -

Level Two LR LMS ANN RBF CR SVR KNN RT AI
LR - 0.0796 0 0 0 0.8409 0 0.2678 0

LMS - - 0 0 0.0156 0 0 0.0040 0

ANN - - - 0 0 0 0.0062 0 0
RBF - - - - 0.1025 0 0 0 0

CR - - - - - 0 0 0.3121 0

SVR - - - - - - 0 0 0

kNN - - - - - - - 0 0

RT - - - - - - - - 0.0045
AI - - - - - - - - -

Table 4.  Paired two-sample student t-test results for the level-one dataset.  Values less than 0.05 are statistically 
significant	at	the	95%	level.		The	0	values	indicate	that	the	values	are	less	than	0.0001.

Table 5.  As for Table 4, except for the level-two dataset.  

SVR and LR; CR and RBF; RT and LR; and RT and SVR. 
	 Thus,	 the	 most	 accurate	 method,	 kNN,	 produces	
significantly	 better	 MAEs	 than	 all	 other	 methods	 on	
both datasets.  For both levels, four methods produce 
significantly	 more	 accurate	 forecasts	 than	 linear	
regression;	kNN,	ANN,	SVR	and	AI;	the	MAE	for	SVR	was	
not	 significantly	different	 from	 that	 for	LR	on	 the	 level-	
two dataset, however.

b. Ensemble Spread Tests

	 It	 is	 also	 important	 to	 evaluate	 calibration	 of	 the	
ensemble spread given by the statistical post-processing 
methods.  A simple method quantifying this calibration is the 
spread-skill	relationship,	which	measures	the	correlation	
between the ensemble spread and the ensemble mean 
error	(Whitaker	and	Loughe	1998).		The	ensemble	spread	
is	 calculated	 by	 finding	 the	 standard	 deviation	 of	 the	
ensemble member forecasts.  The ensemble error is the 
absolute difference between the ensemble consensus 
forecast and the snowfall accumulation observation.  An 
ideally calibrated ensemble should show a y = x relation, 



Statistical Guidance Methods for Predicting Snowfall Accumulation

Volume 35 Number 2 ~ December 2011 155

or a slope of unity, between the ensemble error and 
the	 ensemble	 spread.	 	 In	 practice,	 any	 ensemble	whose	
spread x is related to the error y by a linear equation of 
the form y = mx+b, could be recalibrated by that equation 
to yield more accurate estimates of the ensemble error.  
Therefore,	Tables	6	and	7	show	the	correlation	coefficient,	
slope,	and	intercept	for	this	linear	fit	for	the	level-one	and	
level-two datasets respectively.  Values of the correlation 
coefficient	closer	to	1	indicate	a	better	fit.
	 The	method	with	 the	highest	 correlation	coefficient	
values	 for	both	 levels	 is	 the	k-nearest	neighbor	method.	
Several other methods have slopes closer to unity but with 
correlation	 coefficients	 much	 less	 than	 one,	 indicating	
a	 weaker	 relationship.	 These	 spread-skill	 plots	 and	
correlation	analyses	show	that	the	kNN	method	produces	
the ensemble spread best able to predict the ensemble 
prediction uncertainty via a linear recalibration.
 Another technique for evaluating both the forecast 
accuracy and uncertainty is the use of quantile-quantile, 

Method R Slope Intercept
LR 0.25 1.20 0.02

LMS 0.06 0.97 0.03

ANN 0.33 1.12 0.02

RBF 0.10 1.28 0.03

CR 0.17 0.52 0.03

SVR 0.32 3.28 0.01

kNN 0.80 1.66 0.00

RT 0.37 0.89 0.02

AI 0.49 4.58 0.01

Table 6.  Correlation	coefficient	(R),	slope	and	intercept	for	
all statistical guidance methods on the level-one dataset.  The 
highest	correlation	coefficient	value	is	for	the	kNN	method.

Method R Slope Intercept
LR 0.44 0.78 0.02

LMS 0.10 0.24 0.03

ANN 0.55 0.61 0.01

RBF -0.07 1.28 0.03

CR 0.26 0.51 0.04

SVR 0.12 0.29 0.03

kNN 0.90 2.30 0.00

RT 0.39 0.84 0.02

AI 0.47 0.98 0.02

Table 7.  Correlation	coefficient	(R),	slope	and	intercept	for	
all statistical guidance methods on the level-two dataset.  The 
highest	correlation	coefficient	value	is	for	the	kNN	method.

Fig. 3. 	QQ	plot	for	kNN	method	on	the	level-one	dataset.		The	
dark	line	is y = x, the colored plus signs represent the different 
ensemble member quantiles, and the colored dashed lines 
connect	the	first	and	third	quartiles	of	each	ensemble	member.	
The forecast and observation quantiles are plotted in meters.

or	 QQ,	 plots	 (Wilks	 2005).	 	 A	 QQ	 plot	 is	 a	 method	 for	
comparing two probability distributions by plotting the 
quantiles of the two distributions against each other.  
A QQ plot is computed by independently sorting the 
observations from lowest to highest and the forecasts 
from lowest to highest.  The sorted observations are then 
paired with the independently sorted ensemble forecasts.  
These pairs are then plotted with the observations on 
the abscissa versus the ensemble member forecasts on 
the ordinate, as shown by the + signs on Fig. 3 and 4.  
The different colors represent the different ensemble 
members. 

	 The	 QQ	 plot	 for	 kNN	 method	 on	 the	 level-one	
dataset, Fig. 3, has a convex shape compared to the y = 
x	 line.	 	 This	 indicates	 that	 the	 kNN	 method	 produces	
ensemble members with a probability density function 
that	 is	 positively	 skewed	 compared	 to	 the	 probability	
density function of the observations (Marzban et al. 
2010), indicating an over-forecast of snowfall when the 
amount is substantial.   For the level-two QQ plot, the 
plotted quantiles below the y = x line indicate that the 
kNN	method	has	a	negative	forecasting	bias	for	snowfall	
observations greater than 0.1 m.  Although the QQ plots 
for	 kNN	are	not	 ideal,	 they	 indicate	better	performance	
than those of the other methods, which are not shown for 
brevity.	In	addition,	these	QQ	plots	can	be	used	to	improve	
operational forecasting.  For example, at a location site 
above	760	m	(level	two),	if	the	kNN	method	predicts	0.2	
m for an impending snowstorm, the QQ plot shows that 
the forecasts tend to be biased low, and therefore, the 
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skill	 relationships	 and	 QQ	 plots	 were	 used	 to	 examine	
the calibration of ensemble spread.  Two methods, the 
kNN	and	ANN,	showed	potential	improvements	over	the	
AI	consensus	in	terms	of	accuracy,	with	the	kNN	method	
producing the best ensemble spread calibration (i.e. 
uncertainty estimate) of all the methods tested. 
	 The	 results	 demonstrate	 that	 the	 kNN	 statistical	
post-processing method of predicting 2-hr snowfall 
accumulation provides more accurate deterministic 
forecasts than any of the other methods or the consensus 
of	 all	 methods.	 	 The	 MAE	 of	 the	 kNN	 method	 was	
significantly	 smaller	 than	 that	 for	 the	 second	 most	
accurate method, the ANN.   None of the other methods, 
including	 the	RBF	network	 and	 SVR,	 performed	 as	well	
as	did	the	kNN	or	the	ANN.		The	disadvantage	of	the	RBF	
network	and	SVR	is	that	both	methods	give	every	predictor	
the same weight because they are equally valued in the 
distance	computation.	It	is	somewhat	surprising	that	the	
consensus	 method	 (AI)	 did	 not	 perform	 better.	 That	 is	
likely	due	to	the	poor	performance	of	RBF	and	CR	that	is	
averaged into it.
 To evaluate calibration of the ensemble spread as a 
measure of forecast uncertainty, two methods were used: 
spread-skill	 relationships	 and	 quantile-quantile	 (QQ)	
plots.		The	kNN	method	produces	the	highest	correlation	
between ensemble spread and ensemble error for 
both level-one and level-two.  Thus, its spread can be 
calibrated via a linear transformation to produce useful 
error	estimates	(Kolczynski	et	al.	2009).		In	addition,	the	
QQ	plots	confirm	that	the	kNN	method	produces	the	most	
appropriately calibrated ensemble and illustrates ways to 
calibrate the forecast more accurately. 
	 In	 summary,	 the	 kNN	 statistical	 post-processing	
method outperforms all of the other methods in terms 
of both deterministic forecast accuracy and producing 
ensemble spread that is linearly related to forecast 
uncertainty.	 Thus,	 the	 kNN	 method	 appears	 to	 be	 the	
best statistical post-processing method for forecasting 
24-h snowfall accumulation for this dataset.  Note that 
this	 method	 essentially	 identifies	 the	 closest	 analogue	
events and use that information to correct the prediction 
for	similar	events	by	similar	amounts.		These	findings	are	
consistent with those of Delle Monache et al. (2011) for 
direct variables.
 This study examined a 24-h snowfall accumulation 
with a forecast period of 12-36 h from model initialization.  
Examining these methods at longer lead times would 
help	confirm	the	rankings	of	 the	methods.	 	The	support	
vector regression technique required extensive computer 
resources.  There are many versions of the support vector 
regression technique, but the extensive computer time 
required to test each limited the number of different 
variations	tested.		It	may	be	possible	to	combine	SVR	with	

Fig. 4. 	QQ	plot	for	kNN	method	on	the	level-two	dataset.		The	
dark	line	is	y = x, the colored plus signs represent the different 
ensemble member quantiles, and the colored dashed lines 
connect	the	first	and	third	quartiles	of	each	ensemble	member.	
The forecast and observation quantiles are plotted in meters.

forecaster should predict snowfall to be greater than 
0.2m.  
 The QQ plots can also be used to assess uncertainty.  
The	dashed	lines	connect	the	first	and	third	quartiles	of	
each ensemble member.  An ideal ensemble would have 
these lines for each ensemble member lie parallel to and 
centered on the y = x	 line.	 	The	QQ	plots	for	the	kNN	on	
level-one show that the slope of these lines are less than 
y = x, but are clustered close together.  For level-two, the 
kNN	method	produces	lines	clustered	just	above	the	y = x 
line.  Both indicate that there are differences among the 
ensemble members, yet they show similar relationships 
between the ensemble member forecasts and the 
observations.  None of the other methods, which are not 
shown for brevity, produce these quartile lines as close to 
the y = x line and clustered together.

5. Conclusions

 Eight different post-processing statistical guidance 
methods and a consensus of these methods were tested 
for producing 24 hr snowfall accumulation forecasts 
from	 direct	 model	 output	 of	 the	 GEFS.	 	 These	 artificial	
intelligence methods were trained to reduce the error 
of the control ensemble member and then applied to 
each ensemble member individually.  An average of 
these individual ensemble members then forms a single 
consensus forecast that becomes a deterministic snowfall 
accumulation forecast.  The MAE of the consensus 
forecast was used to assess forecast accuracy.  Spread-
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a technique that preprocesses the data to allow for faster 
computations and potentially more accurate predictions.  
In	addition,	a	performance-	or	regime-weighted	average	
of these statistical post-processing methods may improve 
the forecast accuracy and spread of the ensemble.

For an operational meteorologist, these results 
are	 significant	 because	 not	 only	 does	 the	 kNN	 method	
produce the most accurate results with the best ensemble 
calibration,	 but	 the	method	 is	 also	 fast	 and	 efficient	 to	
implement for real-time applications.  Free software tools 
such	as	Weka	(Witten	and	Frank	2005)	and	RapidMiner	
(Rapid-i 2010) allow for local implementation with little 
or no programming.  Alternatively this method could be 
implemented at the national level as part of the MOS suite.

Future	work	will	 involve	nonlinearly	calibrating	 the	
kNN	 method	 to	 produce	 better	 model	 error	 estimates.		
The	QQ	plot	for	the	kNN	method	on	the	level-one	dataset	
indicates that the probability density function of the 
forecasts	is	negatively	skewed	compared	to	the	probability	
density function of the observations.  A nonlinear 
calibration method could be devised to transform the 
probability density function of the forecasts to more 
accurately match the probability density function of the 
observations, which would lead to better ensemble spread 
estimates.		For	the	level-two	trained	kNN	method,	the	QQ	
plot showed negative forecasting bias for instances greater 
than 0.1 m.  A non-linear equation could be developed to 
correct	this	deficiency	as	well.		
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Fig. A1.	Schematic	of	an	Artificial	Neural	Network.		

Appendix

 The details of why we chose each method, how it was 
optimized within RapidMiner and its application details 
are described in this appendix.

A. Linear Regression (LR)

 Linear Regression (LR) is perhaps the simplest 
statistical	 post-processing	 method.	 	 It	 determines	 the	
relationship	between	predictand	and	predictors	by	fitting	
a	hyperplane	[i.e.,	multi-input	linear	equation	(Glahn	and	
Lowry 1972)] that minimizes the root mean squared error 
(RMSE).  We test LR to provide a baseline for comparison 
of the remaining techniques, many of which support non-
linear relationships.  

B. Least Median Squares (LMS)

	 In	 a	 slight	 variation	 of	 linear	 regression,	 the	 Least	
Median	 Squares	 (LMS)	method	 (Rousseeuw	and	Annick	
1987)	is	assessed.		It	is	expected	to	be	more	robust	in	the	
face of outliers than LR because it iteratively minimizes 
the median of the squares of residuals from the regression 
line instead of minimizing the mean of the squared 
residuals. 

C. Artificial Neural Network (ANN)

	 The	 first	 nonlinear	 statistical	 guidance	 method	
used	here	 is	 an	Artificial	Neural	Network	 (ANN),	which	
is depicted in Fig. A1 (Rosenblatt 1958).  The goal is 
to improve upon LR and LMS by capturing nonlinear 
relationships between the predictand and the predictors.  
This	 simplified	 diagram	 shows	 four	 predictors	 fed	 into	
one	 hidden	 layer	 consisting	 of	 five	 nodes.	 	 Each node 
includes a LR whose output layer feeds an activation function 
that converts its output into the range from 0 to 1, much as in 
logistic	 regression	 (Reed	 and	Marks	 1990,	 Rosenblatt	 1958).		
These	five	nodes	are	connected	to	the	output	layer,	which	
combines these intermediate results using LR to produce 
the	final	prediction.		This	approach	allows	different	nodes	
to focus on different aspects of the forecast problem with 
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subsequent	 layers	 working	 to	 combine	 those	 elements	
into	a	final	forecast.		The	use	of	an	activation	function	after	
all	 but	 the	 final	 regression	 is	 critical	 to	ANN’s	 ability	 to	
fit	nonlinear	relationships.		While	Fig.	A1	depicts	an	ANN	
with	 only	 four	 predictors	 and	 five	 nodes	 in	 the	 hidden	
layer,	our	ANN	configurations	include	all	of	the	predictors	
listed in Table 1 and incorporate many more hidden layer 
nodes.
  The ANN used in this study is a feed-forward Neural 
Network	 trained	 by	 a	 back-propagation	 algorithm,	 also	
known	 as	 a	 multi-layer	 perceptron	 (Rosenblatt	 1958).		
This	 ANN	 configuration	 includes	 one	 hidden	 layer,	 a	
learning	rate	of	0.1	and	a	momentum	of	0.1.	 	The	back-
propagating algorithm goes through 500 training cycles 
to	find	the	optimal	set	of	model	weights.	 	 	For	level-one,	
the hidden layer contains 30 nodes, while for level-
two	 the	 ANN	 contains	 58	 nodes.	 	 These	 configurations	
are chosen because they produce the lowest RMSE on 
the control ensemble member using a three-fold cross-
validation with 50 training cycles.  Although ten-fold 
cross validation with 500 training cycles is generally used 
(Witten	and	Frank	2005),	three-fold	cross	validation	with	
50	 training	 cycles	 is	 used	 here	 for	 finding	 the	 optimal	
configuration	because	it	still	generalizes	well	and	is	more	
computationally	efficient.	 	 Increasing	 the	momentum	or	
learning rate increased the RMSE, and decreasing these 
parameter	 values	 produced	 statistically	 insignificant	
improvements in RMSE.  The addition of a second hidden 
layer	 or	 decay	 function	 (to	 drive	 the	 LR	 coefficients	 for	
unnecessary predictors towards zero) also increased 
the	 RMSE;	 therefore,	 neither	 were	 used	 in	 the	 final	
configuration.	 	 	 The	 activation	 function	 is	 the	 standard	
sigmoid function, 
      
                                                                            
    (A1)
where Y is the snowfall prediction for instance x.    

D. Radial Basis Function Network (RBF)

 Another method similar to the ANN is a Radial Basis 
Function	 (RBF)	network	 (Witten	and	Frank	2005).	 	The	
key	difference	between	 an	ANN	and	 an	RBF	network	 is	
the way in which the hidden layers perform computation.  
The	RBF	network	uses	Gaussian	radial	basis	functions	as	
the activation functions. 

 (A2)
in	which	Y	 is	 the	 function’s	 output	 for	 input	 vector	 (i.e.	
predictor list) x and node i, c1 is the center vector for 
node i (i.e. the cluster centroid for those training cases 
contributing to the node), and is a weight. The radius, 

x - c1, is the distance from the center of the hypersphere 
(i.e. cluster of cases contributing to that node) to the 
instance x.	 The	 Gaussian	 radial	 basis	 function	 then	
predicts the output P(x), or the snowfall accumulation as
       
                                                (A3)

Here N is the number of nodes in the hidden layer and the 
three weights a1, c1, and ,	are	 tuned	to	optimize	the	 fit	
between	the	predictions	and	the	training	data.		In	this	RBF	
algorithm,	 the	 k-means	 clustering	 algorithm	 computes	
the basis functions, which are normalized to sum to one 
before	being	fed	to	an	LR	model.	(Witten	and	Frank	2005).		
The	RBF	network	with	three-fold	cross	validation	on	the	
control ensemble member for level-one was tested with 
various cluster sizes from 2 to 300 instances in order to 
determine	the	optimal	configuration.		Figure	A2	plots	the	
RMSE	of	the	RBF	network	for	the	different	cluster	sizes.		
The RMSE decreases noticeably until approximately 120 
instances per clusters and then becomes approximately 
level.  Therefore, a cluster size of 120 instances are used 
in	the	RBF	network.		
 

Fig. A2.  Sensitivity study to determine the optimal cluster size 
for	the	RBF	network.

 The minimum standard deviation for the clusters 
was set to 0.1 and the training iterations stop when 
the value for the ridge regression is less than 1.0 x 10-8, 
because these values produced the lowest RMSE for the 
RBF	 configuration	 with	 a	 cluster	 size	 of	 120	 instances.			
Ridge regression was used because it avoids the issue of 
predictor collinearity by using a penalized least squares 
procedure	 (Witten	 and	 Frank	 2005).	 For	 level-two,	 75	
instances	 per	 cluster	 were	 used	 in	 the	 RBF	 network	
because that number produced the lowest RMSE with a 
three-fold cross validation on the level-two dataset for the 
control ensemble member.  Cluster sizes greater than 75 
instances result in an exponential increase of the RMSE, 
which	was	likely	the	result	of	overfitting.

 
E. Conjunctive Rule (CR)

 A Conjunctive Rule (CR) is a machine learning 
algorithm that deduces a set of predictive rules involving 
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the classes while maximizing the separation between the 
closest instances in the classes.  These closest instances 
in this mapped space are the support vectors, which are 
then used to reduce the dimensionality of the problem.  
These support vectors constitute a reduced set of basis 
functions, that when convolved with an appropriate 
kernel	function,	allow	compression	of	the	problem	into	a	
smaller	number	of	parameters.		Thus,	overfitting	is	rarely	
an issue with support vectors because the support vectors 
describe the maximum margin hyperplane and the other 
instances	do	not	affect	the	hyperplane.		In	order	to	form	
a prediction, a dot product between the test instance and 
every	support	vector	(projected	onto	the	kernel	function)	
is	 calculated	 to	 fit	 a	 linear	 regression	 in	 the	 higher	
dimensional nonlinearly mapped space. This mapping 
process can be computationally expensive when there 
are many predictors, as is the situation with the snowfall 
prediction dataset of over 100 predictors. 
 We apply the support vector regression method using 
a	kernel	operator	that	directly	computes	the	dot	product	
between data point vectors, a convergence epsilon of 
0.0010, and a maximum of 100,000 iterations.  This 
configuration	 is	 chosen	 because	 it	 provides	 the	 lowest	
RMSE on the three-fold cross validation compared to other 
convergence epsilons, maximum number of iterations, 
and	types	of	kernels.		

G. K-Nearest Neighbor (kNN)

	 A	 k-nearest	 neighbor	 (kNN)	 algorithm	 works	 by	
searching for k historical analogs to the current predictor 
values and then using the consensus predictand value 
from	those	analogs	as	 the	prediction.	 	The	kNN	method	
first	 normalizes	 the	 predictors	 and	 then	 finds	 the k 
training instances that are closest in Euclidean distance 

the	 predictors	 (Witten	 and	 Frank	 2005).	 	 Conjunctive	
rules are learned by determining conditions shared by 
the examples.  A rule consists of antecedents “AND”ed 
together and the consequent for the regression (Witten 
and	 Frank	 2005).	 	 The	 consequent	 is	 the	mean	 for	 the	
numeric predictors in the dataset.  Uncovered test 
instances are assigned the default mean value of the 
uncovered training instances.  The algorithm selects an 
antecedent by computing the information gain  from each 
antecedent and then prunes the generated rule.  Pruning 
is done with a reduced-error pruning technique that uses 
the weighted average of the mean-squared errors on the 
pruned data to determine the amount of pruning required.  
In	 regression	 problems	 such	 as	 snowfall	 accumulation	
prediction, the information gain is the weighted average 
of the mean-squared errors of both the data covered and 
the data not covered by the rule. As a simple example, a 
conjunctive rule set for predicting whether freezing rain 
is	possible	is	as	follows.		If	the	surface	temperature	is	less	
than 0°C, the 850-hPA temperature is greater than 0°C, 
and the minimum relative humidity is greater than 99%, 
then freezing rain would be predicted. 
 The advantage of this approach is that the rules are 
readily understood by the human forecaster.  A limitation 
of conjunctive rules occurs when particular outcomes do 
not	have	a	single	set	of	necessary	and	sufficient	conditions.		
Because this situation arises with snowfall accumulation 
in the Northeast, conjunctive rules would not be expected 
to perform as well in this study as do some of the other 
non-linear methods.  
 The results for three-fold cross validation on the 
control ensemble member with the level-one dataset 
produces	no	significant	difference	between	using	2,	3,	5,	
10, and 25 rules, with all RMSE values between 0.0566 
and 0.0571 meters.  We opted to use three rules in our 
final	configuration.	

F. Support Vector Regression (SVR)

 Another non-linear method tested here is support 
vector	 regression	 (SVR)	 (Smola	 and	 Scholkopf	 2004;	
Trefalis et al. 2003; Richman et al. 2009).  SVR is essentially 
a linear regression applied in a higher dimensional space 
that	incorporates	nonlinear	relationships.	The	key	to	SVR	
is to transform the input (i.e. predictors) into a new space 
using	 a	 nonlinear	 mapping.	 One	 then	 must	 define	 the	
support	vectors	by	fitting	a	maximum	margin	hyperplane	
that	defines	the	support	vectors	(Witten	and	Frank	2005;	
Marzban 2009).  These support vectors are data instances 
that are closest to this hyperplane.  Figure A3 illustrates 
the	 concept	 of	 a	 support	 vector.	 In	 this	 example,	 the	
instances are separated into two classes, labeled Class 1 
and Class 2.  The maximum margin hyperplane separates 

Fig. A3.  Schematic of a maximum margin hyperplane and 
support vectors separating two classes in support vector 
classification.		The	axes	depicted	here	are	in	the	transformed	
space.
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to	 the	 given	 test	 instance	 (Witten	 and	 Frank	 2005).	 	 A	
consensus forecast is formed from the distance-weighted 
average	of	these	k-nearest	neighbor’s	predictand	values.		
The number k of analogs is selected using leave-one-out 
cross-validation, given an upper limit for k of 100 with the 
optimal value being 6 for the level-one dataset and 5 for 
the level-two dataset.   
	 Figure	 A4	 illustrates	 how	 the	 k-nearest	 neighbor	
algorithm	 works.	 	 All	 dots	 correspond	 to	 instances	
mapped onto a high-dimensional space.  The center 
orange dot corresponds to the test instance that the 
k-nearest	 neighbor	 method	 predicts.	 	 For	 k = 10, the 
algorithm searches for the closest ten instances in this 
space, which is represented by all the dots inside the 
circle.  The method then computes the distance-weighted 
average	snowfall	accumulation	for	these	ten	instances.		In	
this diagram, out of the ten closest instances, eight have 
0.2 m accumulations, one has a 0.1 m accumulation, and 
one has a 0.3 m accumulation.  Thus, the forecast given by 
the	k-nearest	neighbor	method	would	be	0.2	m,	assuming	
the 0.1 m and 0.3 m observations are the same distance 
from the test instance. 

H. Regression Tree (RT)

	 The	 final	 non-linear	 method	 tested	 is	 the	
Regression	Tree	(RT,	Witten	and	Frank	2005).	 	An	RT	 is	
formed by building a decision tree in which the leaf nodes 
contain the numeric value that is the average outcome, i.e. 
snowfall accumulation, of those instances falling in that 
leaf.		The	term	regression	signifies	that	the	tree	produces	
a numerical prediction rather than a categorical forecast 
as in a traditional decision tree.  This algorithm uses 
information gain/variance reduction to select branches 
and prunes the tree using reduced-error pruning. The 
reduced-error	pruning	is	performed	with	back-fitting.		
 A simple example of a regression tree is shown 
in	 Fig.	 A5.	 	 The	 regression	 tree	 in	 this	 figure	 has	 only	
three predictors; temperature, relative humidity, and 
accumulated precipitation. Each node, which are 
represented	as	boxes	 in	 the	 figure,	determines	 the	path	
to traverse down the tree.  When the instance reaches the 
bottom of the tree a regression equation is used to predict 
the snowfall accumulation.
	 We	 determined	 a	 configuration	 that	 produced	 the	
lowest error on three-fold cross validation: the minimum 
number of instances per leaf was set at three, the value 
used to minimize the numeric class variance to determine 

Fig. A5.  Simple diagram of the process of a regression tree 
using three predictors; temperature, relative humidity, 
and predicted accumulated liquid equivalent rainfall. 
Regression equations are used at each leaf to predict snowfall 
accumulation.

Fig. A4.	Illustration	of	the	k-nearest	neighbor	algorithm.		All	
dots correspond to instances mapped on a high dimensional 
space.		For	k	=	10,	the	distance	weighted	average	of	the	ten	
instances inside the circle are used to predict the test instance 
in orange.

the appropriate split  was determined to be 0.001, and the 
number of folds for reduced error pruning was found to 
be three. 

I. Consensus (AI)

	 Finally,	 an	average	of	 the	eight	Artificial	 Intelligence	
(AI)	 methods	 is	 used	 to	 produce	 a	 consensus	 forecast.			
These average forecasts were produced by averaging each 
AI	method	forecast	for	each	instance	and	each	ensemble	
member.  


