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ABSTRACT 

 
Global Forecast System (GFS) model output statistic (MOS) temperatures (GMOS) 

and GFS ensemble MOS average temperatures (EMOS) and maxima and minima were 

analyzed to determine when the EMOS outperformed the GMOS.  Three major groups 

were identified as opportunities for the EMOS to outperform: when the GMOS was equal 

to either the maximum or minimum of the GFS ensemble MOS temperature (Group H/L), 

a second in which the GMOS was within one degree (F) of the maximum or minimum of 

the GFS ensemble MOS (Group +1/-1), and a third which contained the remainder of the 

data set (Group Rest).  An algorithm was developed to evaluate each of the three main 

groups subdivided by forecast period, month and degrees (F) per standard deviation.  

Group H/L identified most of the situations in which the EMOS had higher skill.  EMOS 
higher skill tended to be found in mid to long forecast ranges, with seasons and degrees 

per standard deviation also having a strong influence.  Overall, the algorithm produced a 

15.2% improvement in Root Mean Squared temperature error over the GMOS when the 

EMOS was utilized in lieu of the GMOS. 

 

_______________ 

 

 

 

1. Introduction 

The Global Forecast System (GFS) ensembles and resulting Model Output 

Statistics (MOS) guidance products have well served National Weather Service (NWS) 

forecasters for some time.  While the ensemble data have assisted with the diagnosis of a 

given weather pattern evolution, it has been somewhat difficult to ascertain exactly when 

and under what circumstances the ensemble MOS average temperature (EMOS) can best 

be used over other available forms of guidance.   Past research indicates EMOS tends to 
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have higher skill than GFS MOS temperature (GMOS) for days five through seven.  

Marz (2004) examined the performance of the GMOS and EMOS and found EMOS 

provided a slight improvement over GMOS from days five through seven.  Grumm et al. 

(2005) found that while the GMOS had higher skill than the EMOS through 96 hours, the 

EMOS and GMOS were of comparable skill after 120 hours.  Personal experience has 

revealed that significant skill may be gleaned from EMOS usage especially when 

considering cases in which the GMOS is equal to or near the extremes of the ensemble 

MOS.  Maloney et al. (2010) and MDL (2008) provide descriptions of the GFS MOS and 

GFS ensemble MOS, respectively. 

  

2. Data Source 

An extensive analysis of the GMOS and EMOS was performed from January 

2008 through October 2009 with data collected for the southeastern United States 

including 118 stations (Table 1, Figure 2), yielding about one million pairs of guidance 

data and observed highs and lows.  The EMOS and GMOS temperatures were taken from 

ensemble guidance summary messages which also contain statistics on the 21 ensemble 

members such as the maximum and minimum temperature and degrees per standard 

deviation (Equations 1 and 2).  An example of this product is shown in Table 2, and for 

brevity, it just contains the temperature guidance.  Hourly and synoptic observations were 

collected to calculate the overnight minimum temperatures from 7:00 pm to 8:00 am 

(LST) and the daytime maximum temperatures from 7:00 am to 7:00 pm (LST). 

  (1) 
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 (2) 

standard deviation = , highest ensemble temperature = EMOSmax, 

and lowest ensemble temperature = EMOSmin 

 

3. Analysis 

From previous operational experience of known opportunities for which the 

EMOS has shown skill over the GMOS, the GMOS and EMOS were divided into three 

groups: one in which the GMOS was equal to the maxima or minima of the ensemble 

MOS (Group H/L), a second in which the GMOS was within one degree of the maxima 

and minima (Group +1/-1), and a third which included the remainder of the data (Group 

Rest).  The skill for when GMOS was at or near the ensemble MOS maxima or minima 

was found to rapidly diminish from Group H/L to Group +1/-1.  No tangible increase in 

skill was found from creating groups for when the GMOS was within two or more 

degrees of the ensemble MOS maxima or minima.  Consequently, including all of these 

into Group Rest was found to produce better results. 

 

These three groups were further subdivided again according to three variables.  

Two of these, forecast period and degrees per standard deviation, have been recognized 

as measures by which EMOS skill varies.  Much can be inferred from the degrees per 

standard deviation, such as the general uncertainty of the weather pattern evolution and 

the degree of „meridionality‟ of the upper level wind flow pattern.  The third variable is 

the month of the year as skill was found to vary seasonally.  These divisions resulted in 

about 3800 sample sets.  An algorithm was developed to analyze each of these to identify 
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those where the EMOS showed statistically significant skill over the GMOS.  The 

flowchart in Figure 1 describes how the algorithm processes the GMOS and EMOS for 

each sample set.   

 

While the divisions by forecast period and month yielded relatively equal sample 

sets, there was the potential for large differences in the sample sizes with differing values 

for degrees per standard deviation.  The sample sizes tend to be larger for small values of 

degrees per standard deviation with progressively smaller sample sizes for 

correspondingly larger values of degrees per standard deviation, which are less common.  

The performance of the GMOS and EMOS in each of these samples was measured by 

computing the root mean square error (RMSE) for sample size n of the verified 

temperature forecast per Equation 3, and the number of times the EMOS had a smaller 

absolute error than the GMOS in percent (EMOSwin) as seen in Equation 4 for sample 

size n. 

 

       (3) 

 

    (4) 

 

The best algorithm performance was found with EMOS RMSE of at least 5% less 

than the GMOS RMSE and the EMOSwin of at least 51%.  The EMOSwin was used in 

addition to the RMSE performance measurement since several very favorable scores for 

the EMOS average may misleadingly sway the RMSE comparison, especially for smaller 
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sample sizes.  For all cases in which the EMOS met the minimum RMSE and EMOSwin 

criteria (with a minimum sample size of eight pairs), a Wilcoxon non-parametric test for 

two matched samples was utilized at the 95% confidence level to determine if the EMOS 

was statistically different from the GMOS.  The technique for the Wilcoxon test is 

described in Winkler and Hays (1975).  The Wilcoxon test was used in lieu of parametric 

statistical tests such as the t-test due to the inherently non-Gaussian bimodal nature of the 

H/L and +1/-1 groups, and the tendency to depart from a Gaussian distribution for higher 

values for degrees per standard deviation in the Rest group. 

 

There were instances in which the EMOS RMSE, EMOSwin and minimum 

sample size criteria were met, but the Wilcoxon test was not sufficient to pass at the 95% 

confidence level.  In such cases an additional step was performed by the algorithm which 

uses the larger annual dataset for the three main data groups.  If the Wilcoxon test for the 

larger dataset passes, then the algorithm allowed the case in question to be used.  This is 

not common and affected only about 0.3% of the sample subsets. 

 

4. Results 

Overall, the algorithm was fairly conservative and identified just over 5% of the 

total database in which the EMOS was superior to the GMOS on an annual basis.  Less 

stringent settings for the minimum RMSE and EMOSwin will allow for the algorithm to 

identify more cases but at the expense of overall improvement over the GMOS.  Of the 

identified cases, Group H/L accounted for about 81% of the identified cases (about 4% of 

the total database) which seems logical as this group is made up of instances where the 
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GMOS was equal to the ensemble MOS maxima or minima.  This relationship of success 

with outliers (instances in which the GMOS is equal to the ensemble MOS maxima or 

minima) in the GMOS breaks down quickly though as the near outlier Group +1/-1 

accounts for only 7% of identified cases with Group Rest comprising the remaining 13%. 

 

Significant seasonal differences were found and were the reason for subdividing 

the database by month as seen in Table 3.  The bulk of the identified cases occurred in 

May through July (47.2%) and the period from October through January (36.8%).  For 

the warmer months, the improvements tended to be associated with daytime high 

temperatures in which the GMOS was at or near the ensemble MOS minimum whereas 

the cooler months tended to be concentrated in later forecast periods for both daytime 

highs and nighttime lows. 

 

Seasonal transition months such as March through April and August through 

September tended to have the least identified cases.  It is not clear what contributes to the 

decreased EMOS skill during this period and more research is required to explore this, 

but it is surmised the lower EMOS skill is due to the verifying weather pattern leaning 

towards a warm or cold solution, rather than a more moderate solution represented by the 

ensemble average.  The EMOS may represent a less plausible solution in such situations 

rather than choosing either the warm or cold solution, unless the uncertainty is so great 

the forecaster prefers to resort to other techniques.  It rests upon the forecaster to 

determine which model solution seems reasonable for a given pattern, but results 
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presented here will hopefully assist with the recognition of instances where the EMOS 

will outperform the GMOS. 

 

One of the motivations for this research was the hypothesis that EMOS should 

exhibit its greatest value when the model solution envelope is widest (i.e., when the 

evolution of the weather pattern was most uncertain).  The results showed that while the 

latter is true to some degree, it is usually not the case for short-term forecast periods 

(days 1-3) or with extremely high values of degrees per standard deviation.  

Paradoxically, there tends to be a higher degree of skill for the EMOS average at small 

values of degrees per standard deviation, especially during summer months.  Summer 

values for degrees per standard deviation tend to be smaller due to the lack of large-scale 

air mass changes, and the significant skill is likely due to the GMOS producing a solution 

which differs significantly from most of the EMOS members.  Another interesting 

finding was the algorithm was unable to find a statistically valid case in which the EMOS 

average outperformed the GMOS when the degrees per standard deviation were greater 

than 7.  Bimodal solutions or disparity among the EMOS members are likely the cause, 

but this could also be due to a lack of sufficient data in these rarely occurring high values 

of degrees per standard deviation. 

 

Performance matrices were created for each of the three main groups (Group H/L, 

Group +1/-1 and Group Rest) subdivided by forecast period, degrees per standard 

deviation and month.  Annual performance matrices (see Table 4) show where each of 

the groups were identified to have skill in a matrix of degrees per standard deviation by 
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forecast period.  The monthly performance matrices (see Table 6) are arranged similarly.  

A visual inspection of the monthly matrices tends to show clustering of EMOS skill in 

the later forecast periods for values for degrees per standard deviation of 2 to 6 degrees in 

the cooler months and for small values of degrees per standard deviation (1 to 2 degrees) 

during the warmer months, which follows upon earlier discussion.  Another example of 

the advantage to using monthly statistics can be seen by comparing the annual and 

monthly matrices.  The annual matrices show EMOS skill generally only with the higher 

values for degrees per standard deviation and miss the skill found in the higher resolution 

monthly data such as during the summer months. 

 

As the performance matrices were developed from the entire dataset of the 118 

stations, the skill of the performance matrices were evaluated individually for each of the 

118 stations by treating each as a small sample of the large dataset.  The overall 

improvement for each station is shown in parentheses in Table 1 and a geographic 

representation shown in Figure 2.  The improvement averages 15.2% and ranges from a 

high of 26% at Springfield, Missouri (KSGF) to a low of 5% at New Orleans, Louisiana 

(KNEW).  Interestingly, no clear pattern is evident in Figure 2 which suggests that 

geography is not a significant factor in determining cases in which the EMOS is superior 

to the GMOS.  This also portends the performance matrices could be applied to stations 

over a wider geographic area. 

 

The algorithm ingests the current GMOS and EMOS and creates a table for 

temperature guidance in the forecast area of responsibility by utilizing the performance 
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matrices.  An example of the table is shown in Table 5 and is known as the “smart 

guidance product.”  In this product, whenever the EMOS average is used in lieu of the 

GMOS, an asterisk is placed beside the number alerting the forecaster to the change.  In 

this example, daytime highs in forecast period 13 are nearly all identified as having 

higher EMOS skill.  Such instances should stand out to the forecaster as an opportunity to 

provide a better forecast than one obtained from the GMOS alone.  Also, experience with 

this product indicates that when the algorithm selects only a few EMOS temperatures for 

a given forecast period, the forecaster will need to exercise his or her judgment on 

whether to use the EMOS selections at all, for the sake of consistency.  The reason is that 

sometimes the EMOS temperatures differ significantly from the bulk of the other 

neighboring sites where the GMOS temperature was selected for use.  Mixing the EMOS 

and GMOS solutions in this manner may result in areal discontinuities that do not make 

meteorological sense and conflict with the overall meteorological integrity of the field.  

On the other hand, if these few EMOS temperatures are grouped in a region of the 

forecast area, this may be a reasonable solution. 

 

5. Conclusion 

The monthly and annual matrices represent the culmination of this research as 

they contain the specifically identified cases in which the EMOS has higher skill, with an 

average skill of 15.2%.  These can in turn be used in the forecast process to improve upon 

temperature verification through the skillful use of the EMOS average temperature 

guidance.  The algorithm creates a table that accomplishes this for the forecaster.  This 

“smart guidance product” can be generated daily upon receipt of the latest EMOS and 
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GMOS and represents the application of this EMOS research.  It is hoped the use of such 

a table will improve verification scores through the skillful application of the EMOS. 
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TABLES AND FIGURES 

 

KAEX Alexandria, LA (14%) 

KAIZ Kaiser, MO (15%) 

KANB Anniston, AL (12%) 

KARA New Iberia, LA (11%) 

KARG Walnut Ridge, AR (15%) 

KASD Slidell, LA (7%) 

KAUO  Auburn, AL (11%) 

KBAD Barksdale AFB, LA (18%) 

KBFM Mobile Downtown, AL (14%) 

KBHM Birmingham, AL (17%) 

KBIX Biloxi, MS (9%) 

KBLV Belleville, IL (14%) 

KBPK Mountain Home, AR (13%) 

KBPT Beaumont, TX (10%) 

KBTR Baton Rouge, LA (12%) 

KBVX Batesville, AR (12%) 

KBWG Bowling Green, KY (8%) 

KCBM  Columbus AFB, MS (13%) 

KCDJ Chillicothe, MO (13%) 

KCEW Crestview, FL (17%) 

KCGI Cape Girardeau, MO (13%) 

KCOU Columbia, MO (16%) 

KCPS Cahokia, IL (17%) 

KCSV Crossville, TN (9%) 

KDCU Decatur, AL (15%) 

KDEC Decatur, IL (18%) 

KDHN Dothan, AL (14%) 

KDMO Sedalia, MO (17%) 

KDTN Shreveport Dwntwn, LA (18%) 

KDTS Destin, FL (17%) 

KEET Alabaster, AL (14%) 

KEHR Henderson, KY (18%) 

KELD El Dorado, AR (16%) 

KESF Alexandria Esle, LA (16%) 

KEVV Evansville, IN (17%) 

KFAM  Farmington, MO (17%) 

KFLP Flippin, AR (18%) 

KFSM Fort Smith, AR (12%) 

KFYV Fayetteville, AR (15%) 

KGAD  Gadsden, AL (12%) 

KGGG  Longview, TX (19%) 

KGLH Greenville, MS (18%) 

KGPT Gulfport, MS (8%) 

KGWO Greenwood, MS (12%) 

KGZH Evergreen, AL (20%) 

KHEZ Natchez, MS (11%) 

KHKA Blytheville Muni Aprt, AR (9%) 

KHNB Huntingburg, IN (15%) 

KHOP Fort Campbell, KY (11%) 

KHOT Hot Springs, AR (12%) 

KHRO Harrison, AR (10%) 

KHRT Hurlburt Field, FL (12%) 

KHSV Huntsville, AL (16%) 

KIXD Olathe New Century, KS (18%) 

KJAN Jackson, MS (18%) 

KJBR Jonesboro, AR (19%) 

KJEF Jefferson City, MO (16%) 

KJLN Joplin, MO (14%) 

KLCH Lake Charles Rgnl, LA (14%) 

KLFK Lufkin, TX (16%) 

KLFT Lafayette, LA (17%) 

KLIT Little Rock, AR (14%) 

KLLQ Monticello, AR (21%) 

KLWV Lawrenceville, IL (20%) 

KMAI Marianna, FL (12%) 

KMCB McComb, MS (25%) 

KMCI Kansas City Intl, MO (15%) 

KMDH Carbondale, IL (19%) 

KMEI Meridian, MS (13%) 

KMEM Memphis, TN (17%) 

KMGM Montgomery, AL (18%) 

KMKC Kansas City, MO (15%) 

KMKL  Jackson, TN (21%) 

KMLU  Monroe, LA (18%) 

KMOB Mobile, AL (9%) 

KMSL Muscle Shoals, AL (14%) 

KMSY  New Orleans, LA (5%) 

KMVN Mount Vernon, IL (14%) 

KMWT Mount Ida, AR (15%) 

KMXF Maxwell AFB, AL (7%) 

KNEW New Orleans Lakefrnt, LA (7%) 

KNMM Meridian NAS, MS (25%) 

KNPA Pensacola NAS, FL (20%) 

KNSE Whiting Field NAS, FL (24%) 
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KOCH Nacogdoches, TX (19%) 

KOJC Olathe, KS (17%) 

KOZR Ozark, AL (22%) 

KPAM Panama City Tyndall, FL (19%) 

KPBF Pine Bluff, AR (17%) 

KPFN Panama City, FL (10%) 

KPIB Pine Belt, MS (20%) 

KPNS Pensacola, FL (16%) 

KPOE Fort Polk, LA (14%) 

KPOF Poplar Bluff, MO (14%) 

KPQL Pascagoula, MS (20%) 

KRUE Russellville, AR (12%) 

KSET St. Charles, MO (16%) 

KSGF Springfield, MO (26%) 

KSGT Stuttgart, AR (22%) 

KSHV Shreveport, LA (16%) 

KSLG Siloam Springs, AR (13%) 

KSPI Springfield, IL (13%) 

KSTJ St. Joseph, MO (21%) 

KSTL St. Louis, MO (14%) 

KSUS Spirit of St Louis, MO (14%) 

KSZL Whiteman AFB, MO (17%) 

KTBN Fort Leonard Wood, MO (16%) 

KTCL Tuscaloosa, AL (13%) 

KTOI Troy, AL (12%) 

KTUP Tupelo, MS (21%) 

KTVR Vicksburg, MS (10%) 

KTXK Texarkana, AR (13%) 

KUIN Quincy, IL (12%) 

KUNO West Plains, MO (18%) 

KVBT Bentonville, AR (13%) 

KVIH Rolla, MO (16%) 

KVPS Valparaiso, FL (13%) 

KXNA NW Arkansas Aprt, AR (13%) 

 

Table 1.  Stations used in this study with algorithm RMSE percent improvement of 

EMOS over GMOS for each station.  See Figure 2 for geographic references. 

 

 

 

 
KMOB   ENSEMBLE MOS GUIDANCE   11/04/2008  0000 UTC 30.68  -88.25 

FHR  24| 36  48| 60  72| 84  96|108 120|132 144|156 168|180 192 

TUE  04| WED 05| THU 06| FRI 07| SAT 08| SUN 09| MON 10| TUE 11 CLIMO 

X/N  

GFS  77| 53  79| 55  81| 59  75| 50  77| 50  76| 51  72| 54  74 50 71 

AVG  74| 52  74| 53  74| 56  75| 57  72| 47  71| 46  69| 48  68  

STD   0|  0   1|  0   1|  1   1|  3   1|  3   1|  1   1|  2   1  

HI   77| 54  79| 55  81| 59  78| 61  77| 56  76| 51  73| 54  74  

LOW  73| 51  74| 52  73| 55  74| 50  70| 43  67| 43  66| 45  66  

 

Table 2.  Example of combined GMOS and EMOS guidance product.  “GFS” is the 

GMOS, “AVG” is the EMOS average temperature, and “STD” is the degrees per  

standard deviation.  This type of EMOS summary message was produced by software 

developed by Timothy Barker (NWS Weather Forecast Office, Boise, ID), a description 

of which can be found at: 
http://www.mdl.nws.noaa.gov/~applications/LAD/generalappinfoout.php3?appnum=2525 

 

 

 

 

http://www.mdl.nws.noaa.gov/~applications/LAD/generalappinfoout.php3?appnum=2525
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January 7.6%  May  9.4%    September 2.9% 

February 5.5%  June  15%  October 10.6% 

March  2.6%  July  22.8%  November 11% 

April  1%  August  4%  December 7.6% 

 

Table 3.  Algorithm identified cases by month. 

 

 

 

 
DpStdv     0   1   2   3   4   5   6   7 

Pd  7                      H   HR  R 

Pd  8                          H 

Pd  9                          HFR HR 

Pd 12                              HR  R 

Pd 13              H 

Pd 15              H       H   FR  R 

 

 

 

Table 4.  Annual algorithm performance matrices by degrees per standard deviation 

(DpStdv) and forecast period.  “H” is Group H/L, “F” is Group +1/-1, and “R” is Group 

Rest. 

 

 

 

 
GMOS/EMOS TEMPERATURE GUIDANCE PRODUCT FOR 11/29/2008 0000Z 

  

DATE  29  SUN  30  MON  01  TUE  02  WED  03  THU  04  FRI  05  SAT  06 

KDTS  72   60  64   45  58   38  59   46  67   52  65   50  66   55  69  

KGZH  70   54  59   42  48   32  56   36  64   44  61*  40  58*  48  68  

KMEI  66   50  55   35  47   32  55   39  64   43  56   39  57*  46  64  

KMGM  69   54  57   41  50   33  53   36  64   44  59   38  57*  46  66  

KMOB  73   55  63   40  57   34  59   42  70   49  62*  46  59*  52  69  

KNPA  72   59  65   42  55   37  56   46  70   52  64   46  62*  53  68  

KPNS  73   58  64   42  55   35  59   43  66   50  63   48  61*  44* 68  

KVPS  72   59  64   43  54   36  58   42  64   50  64*  48  62*  54  68 

* means EMOS guidance was used due to superior performance. 

Otherwise GMOS guidance was used due to superior performance. 

 

 

Table 5.  Example of Smart Guidance Product.  Where the EMOS temperature guidance 

was used in lieu of the GMOS, the temperature is followed by an asterisk. 
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January                                   

DpStdv  0   1   2   3   4   5   6   7 

Pd  7                   HF  R   R 

Pd  8                       H 

Pd  9                               R 

Pd 10               H   HR 

Pd 11       H   H   H   H 

Pd 12           H   F           H   R 

Pd 13                       H 

Pd 14                       H 

Pd 15                   H   R   R 

 

February 

DpStdv  0   1   2   3   4   5   6   7 

Pd  8                               R 

Pd  9                       F 

Pd 11                   HF 

Pd 12                           R 

Pd 13       H   H 

Pd 15   H   H   H       H   R 

 

March 

DpStdv  0   1   2   3   4   5   6   7 

Pd  5                   H 

Pd  7                   R   H 

Pd  8                   F 

Pd  9               F       HFR 

Pd 10                               R 

Pd 12                           H 

Pd 13           H 

Pd 15                       HFR R 

 

April 

DpStdv  0   1   2   3   4   5   6   7 

Pd  7                   H   R 

Pd  8                       R 

Pd  9               H 

Pd 11                           R 

Pd 12   H 

Pd 14   H           F 

Pd 15               H           R 

 

May 

DpStdv  0   1   2   3   4   5   6   7 

Pd  2           F 

Pd  4               H 

Pd  5               R 

Pd  7                   H 

Pd  9                   R 

Pd 10       H           HFR 

Pd 11               H   H 

Pd 12           F       R 

Pd 13           H   F   R 

Pd 15       H   H   H 

 

June 

DpStdv  0   1   2   3   4   5   6   7 

Pd  2       H 

Pd  4       H 

Pd  5       H 

Pd  6       HF  F 

Pd  7       H 

Pd  9       H 

Pd 11       H 

Pd 15       H 

 

 

 

 

 

 

July 

DpStdv  0   1   2   3   4   5   6   7 

Pd  2       H 

Pd  3           F 

Pd  4       H 

Pd  5       H 

Pd  7       H   F 

Pd  8           H 

Pd  9       H   H   H 

Pd 10           H 

Pd 11       H 

Pd 13           H 

Pd 15       H   H 

 

August 

DpStdv  0   1   2   3   4   5   6   7 

Pd  2       H 

Pd  4       H 

Pd  8       H   HF 

Pd 10           HF 

Pd 12           F 

Pd 13           F 

Pd 14           F 

 

September 

DpStdv  0   1   2   3   4   5   6   7 

Pd  2       H 

Pd  7               H   H 

Pd  9               H   R 

Pd 11               HR 

Pd 13           H   H 

Pd 15           HFR 

 

October 

DpStdv  0   1   2   3   4   5   6   7 

Pd  1           H 

Pd  2           H 

Pd  8           R 

Pd  9   H           HF      R   R 

Pd 10       F   HFR     R 

Pd 11                       R   R 

Pd 12       H                   R 

Pd 13   H   H   H 

Pd 14           HF 

Pd 15       H   HF  H   H       R 

 

November 

DpStdv  0   1   2   3   4   5   6   7 

Pd  5           H   H 

Pd  6                   HR 

Pd  7           HF 

Pd  8   H   H   HF  H       R 

Pd  9           HF 

Pd 10   H           H   H 

Pd 11       H       H 

Pd 12       HF  HF  H 

Pd 13       H   H   F   R   H 

Pd 14   HF  H           H 

Pd 15                       R 

 

December 

DpStdv  0   1   2   3   4   5   6   7 

Pd  3               R   R 

Pd  5       H   H       R   R   R 

Pd  7               H   F   HR  R 

Pd  8               H   R   H   H 

Pd  9                   HR  HR  HR  R 

Pd 11               H   H       R 

Pd 12                           R 

Pd 14           F       F 

Pd 15           HF  H   H 

 

Table 6.  Monthly algorithm performance matrices by degrees per standard deviation 

(DpStdv) and forecast period.  “H” is Group H/L, “F” is Group +1/-1, and “R” is Group 

Rest. 
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Figure 1.  Algorithm flowchart.  The algorithm ingests paired GMOS and EMOS data 

and subdivides each by Group H/L, Group +1/-1 and Group Rest.  The Wilcoxon non 

parametric statistical test (Winkler and Hays, 1975) for paired samples was conducted in 

addition to parameters for minimum RMSE improvement and EMOSwin.  A minimum 

sample size was also used.  The results in turn are used to create the monthly and annual 

performance matrices.  DpStdv is the degrees per standard deviation. 
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Figure 2.  Algorithm RMSE Percent Improvement of EMOS over GMOS. 
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