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ABSTRACT 

 During the growing season in the central United States, severe thunderstorms frequently occur and 

produce large hail that damages the underlying vegetation, often in agricultural areas. Satellite remote 

sensing provides a tool for identifying these damaged areas. Previous studies have used changes in the 

normalized difference vegetation index (NDVI) to identify and examine these areas of damage, but have done 

so in a manual, time-consuming manner. This study examines an automated approach to detecting areas of 

hail damage in satellite imagery. Two techniques are evaluated: (i) use of an NDVI change threshold and (ii) 

detection of anomalies that occur in both daily NDVI and land surface temperature imagery. The two 

techniques are scored against one another using three different case studies. Two of the case studies occurred 

late in the growing season in August, and the third occurred in the growing season in early June. The NDVI 

threshold performed well in the two August case studies with a final probability of detection (POD) ranging 

from 0.497 to 0.647, whereas the anomaly detection for these two case studies had a lower POD of 0.317 to 

0.587. The early June case study highlighted the limitations of using an NDVI threshold and the strengths of 

using anomaly detection. The POD for the NDVI threshold technique was 0.07–0.08 with a false alarm ratio 

(FAR) of 0.661–0.758, whereas the anomaly detection had a POD of 0.399–0.418 and a FAR of 0.540–0.681 for 

this third case study. 

 
 

1. Introduction 

 The primary growing season for many agricultural 

crops (e.g., corn and soybeans) in the central United 

States runs from late May through late August. This 

period coincides with the occurrence of severe thun-

derstorms that bring damaging winds, large hail, and 

occasional tornadoes, resulting in damage to these 

crops and other surface vegetation. On average, hail 

causes anywhere from ~$161.4
1
 million [Storm Pre-

diction Center (SPC) 2016] to ~$580 million (Chang-

non et al. 2009) in damage to crops annually. Areas of 

hail-damaged crops may be localized, but in some 

severe weather events, the areal coverage of the dam-

age can be quite extensive. Manual surveys of hail-

damage areas with large spatial extent have been 

                                                 
1
 Annual average for 2007–2015 from SPC storm report data. 

 

completed, but these surveys have been difficult and 

time-consuming to perform. 

 Satellite remote sensing has been used previously 

in some surveys, and automated tools can be incorpo-

rated to increase the skill of future surveys. Remote 

sensing of hail and severe weather damage to crops 

has been well-documented. Klimowski et al. (1998) 

used the Geostationary Operational Environmental 

Satellite-8 (GOES-8) to observe hail damage in South 

Dakota. GOES-8 only provided visible wavelength 

(0.52–0.72 µm) imagery with 1-km spatial resolution 

at nadir. However, the damage area was observed to be 

120-km long with varying widths ranging from 7 to 11 

km, totaling 200 000 acres (~809 km
2
) of destroyed 

vegetation and another 300 000 acres (~1214 km
2
) of 

significant damage. 

 In July 2003, several rounds of severe thunder-

storms moved through southeastern North Dakota, 

northeastern South Dakota, and western Minnesota, 

http://dx.doi.org/10.15191/nwajom.2016.0411
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leaving several hail-damage swaths across the land-

scape. Parker et al. (2005) observed and analyzed 

these swaths using the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments aboard Terra 

and Aqua, two polar-orbiting NASA research satel-

lites. MODIS instruments have 36 channels that in-

clude observations in the visible, near-infrared, and 

thermal-infrared portions of the electromagnetic spec-

trum. This allowed Parker et al. to difference the 7-day 

pre- and post-event normalized difference vegetation 

index (NDVI) composites at 500-m spatial resolution 

for identifying areas of damage. NDVI is computed by 

the following equation: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (1) 

 

and for MODIS is based on the near-infrared (NIR, 

0.865 µm) and red (0.645 µm) bands. NDVI is used to 

monitor the greenness (health) of the vegetation on a 

scale of –1 to 1, with values closer to 1 indicating 

greener vegetation (Kriegler et al. 1969). In agri-

cultural areas, NDVI values for crops are for the most 

part synchronous with the growing season, except 

those few that are winter-based (Fig. 1). The majority 

of crops across the Corn Belt will begin to green up in 

late spring and continue greening as they mature. 

These crops (corn and soybeans) will reach their peak 

NDVI values just prior to being harvested (Fig. 1). 

 

 
Figure 1. Normalized difference vegetation index (NDVI) values 

of common agricultural crops in the state of Kansas (reproduced 

from Fig. 3 in Wardlow and Egbert 2008). Click image for an 

external version; this applies to all figures hereafter. 

 

 Parker et al. (2005) observed warmer brightness 

temperatures in GOES infrared imagery (11.7 µm) in 

and around the damaged areas when compared to the 

surrounding undamaged areas. The damaged areas 

reported an increase in temperature (0.9°C) and a 

decrease in dewpoint (0.3°C), which in turn increased 

convective available potential energy and decreased 

convective inhibition (CIN). Segele et al. (2005) 

observed similar trends in a 1997 hail streak in South 

Dakota. Daily temperature (dewpoint) trends observed 

for seven days after the damage occurred showed a 

2°C increase (2.6°C decrease). Parker et al. (2005) 

performed numerical simulations with a portion of the 

first hail swath represented within the modeled land 

surface. Results showed that the damage swath was 

able to help with the development of deep convection, 

especially within simulations that contained a modest 

amount of CIN. Following the creation of the damage 

scar, these changes in sensible heat and buoyancy 

appeared to influence storms that formed later in July. 

Segele et al. (2005) also performed numerical simula-

tions to see how this change in vegetation would 

change the boundary layer. They noted that updated 

daily land surface information was ideal for capturing 

the effect that a hail streak would have on the bound-

ary layer. 

 On the morning of 9 August 2009, central Iowa 

was affected by severe thunderstorms with damaging 

hail, and vegetation damage was visible in MODIS im-

agery. Gallo et al. (2012) compared pre- and post-

storm NDVI in the damage area to available radar data 

and ground reports of hail. NDVI imagery from before 

the event showed a uniform, green vegetation pattern 

across portions of central Iowa, with sporadic lower 

values representing urban areas. Imagery from the 

post-event timeframe showed multiple large areas of 

lower NDVI as a result of the storms. Hail-affected 

vegetation resulted in NDVI decreases in the week 

after the severe storms, ranging from –0.021 to –0.357. 

Gallo et al. noted that 77% of the pixels that received 

radar-estimated hail of any size resulted in a decrease 

of NDVI between the pre- and post-storm composites. 

When the threshold for radar-estimated hail size was 

increased to >2.54 cm (1 in) and >5.08 cm (2 in), the 

percentage of pixels with a decrease in NDVI in-

creased to 87% and 92%, respectively. 

 Molthan et al. (2013) examined hail swaths pro-

duced from severe thunderstorms that occurred on 18 

August 2011 across extreme southeastern South Dako-

ta, eastern Nebraska, southwestern Iowa, and north-

western Missouri. Molthan et al. performed a similar 

analysis as Gallo et al. (2012) but also incorporated 

observations with higher spatial resolutions from addi-

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_1.png
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tional earth-observing instruments, including Landsat-

7 Enhanced Thematic Mapper Plus (30-m spatial reso-

lution), Terra Advanced Spaceborne Thermal Emis-

sion and Radiometer (15 m), Système Pour l’Observa-

tion de la Terre-4 (SPOT-4, 20 m), and SPOT-5 (10 

m). Molthan et al. (2013) obtained similar results to 

those of Gallo et al. (2012) with respect to the correla-

tions between NDVI change and maximum estimated 

size of hail (MESH) size. Molthan et al. (2013) used 

the higher spatial resolution sensors to confirm field-

scale damage and NDVI reductions in areas that corre-

sponded to the MESH hail-fall streaks and coarser-

resolution MODIS observations. 

 This study builds on previous work by comparing 

damage identified by NDVI change (thresholding) and 

an image-processing technique (anomaly detection) to 

identify areas of hail damage in Aqua MODIS im-

agery. This study used only Aqua MODIS because the 

daily observation time is close to the peak of diurnal 

heating, and the use of a land surface temperature 

(LST) product is included in the anomaly detection 

approach. Diurnal heating allows greater contrast 

between damaged and undamaged areas. Techniques 

described herein can be converted to an automated 

algorithm to attempt an objective mapping of damage 

to vegetation in a near-real-time (NRT) product. Such 

an algorithm will assist in mapping hail damage 

following severe thunderstorms. The NDVI change 

threshold is based on the difference between a pre-

event NDVI composite and post-event single-day 

NDVI image, as used previously by Gallo et al. (2012) 

and Molthan et al. (2013). The anomaly detection 

technique uses single-day NDVI and LST anomalies to 

identify potential areas of damage. The two techniques 

are each tested on three case studies and compared 

against a subjective, manual survey of hail-damage 

areas. Comparisons highlight their relative strengths 

and weaknesses and determine a technique appropriate 

for an NRT algorithm. The success of both techniques 

depends heavily on the impacted vegetation and land 

cover. Areas of the Midwest that are more uniform in 

their vegetation patterns and over a flat landscape 

provide a simpler background for anomaly and thresh-

old-based detections, with more success than in the 

Great Plains and southern plains where the vegetation 

is less uniform and the terrain is more complex. The 

development of an NRT algorithm described herein 

focuses on areas of the Midwest with significant cov-

erage of spring and summertime agriculture coinciding 

with severe thunderstorms. 

 

2. Data and methods 

a. Data 

1) MODIS IMAGERY 

 MODIS surface reflectance was acquired through 

the NASA Land Processes Distributed Active Archive 

Center (available online at lpdaac.usgs.gov/). The 

MYD09GQ product provides daily surface reflectance 

in the red (0.645 µm) and near-infrared (0.865 µm) 

wavelengths at 250-m spatial resolution (Justice et al. 

2002). This Level 2 product is atmospherically cor-

rected for gaseous and aerosol scattering and absorp-

tion, cirrus contamination, and atmosphere coupling 

effects. Additional corrections were made for the bi-

directional reflectance distribution function and ad-

jacency effects caused by variations in the land cover 

(Vermote and Vermeulen 1999). The MYD09GQ 

product was used to create single- and multi-day com-

posite NDVI imagery. Although other vegetation 

indices (e.g., enhanced vegetation index, Jiang et al. 

2008) incorporate information from other spectral 

bands, the use of red and near-infrared reflectance 

from MODIS focuses on imagery with the highest 

spatial resolution (250 m). The Level 2 MYD09GA 

product provides all MODIS visible and near-infrared 

bands at 500-m spatial resolution (Justice et al. 2002) 

and was used to create various true- and false-color 

composites for visual inspection and identification of 

hail-damaged areas. 

 The MYD11A1 product provided daily LST and 

quality assurance (QA) data at 1-km spatial resolution 

(Justice et al. 2002). The LSTs are derived from 

MODIS bands 31 (11.03 µm) and 32 (12.02 µm) with 

QA flags included to identify clouds and cloud 

shadows, poor observations, and other low-quality 

observations (Roy et al. 2002). The QA dataset from 

the MYD11A1 product was used to identify pixels that 

may be cloud-contaminated, which were then removed 

from the analysis in both the MYD11A1 and 

MYD09GQ products. Because clouds typically pro-

duce negative values of NDVI─and cloud shadows 

may reduce the NDVI despite no actual damage to the 

vegetation being present─the quality of damage 

detection is contingent upon the quality of the MODIS 

QA band. 

 The MODIS products described herein are deliv-

ered on a fixed sinusoidal grid that allows end users to 

focus only on their areas of interest. The coverage area 

for this study focused on the central plains, covered by 

four of the grid tiles. For every cell in each tile of these 

https://lpdaac.usgs.gov/
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products, one or two daytime viewings by the Aqua 

MODIS instrument are possible each day, depending 

on whether two swaths overlap a given pixel. Gridded 

MODIS products select the observation with the best 

(nearest nadir) viewing angle and cloud-free condi-

tions. In some cases, a tile can have pixels with obser-

vations from two different overpasses (times of day). 

This will have a limited effect on the MYD09GQ and 

MYD09GA datasets because they are observing the 

surface reflectance and will be impacted primarily by 

changes in cloud cover and sun angle between the two 

observations. The MYD11A1 product will be impact-

ed by the variation in observation time because of 

diurnal heating and cooling, rainfall, and other weather 

effects. This can lead to occasional artifacts (seams) 

observed in the data, but these artifacts did not 

interfere with the results of this study. The MODIS 

Reprojection Tool (lpdaac.usgs.gov/tools/modis_repro 

jection_tool) was used to stitch the various tiles to-

gether, with nearest-neighbor resampling of coarser 1-

km products used to map them to the 250-m grid for 

analysis. 

 

2) MAXIMUM ESTIMATED SIZE OF HAIL 

 Hail occurrence and size estimates for this study 

were taken from the National Severe Storm Laboratory 

(NSSL) MESH product. MESH is a 1-km  1-km 

composited radar product available across the domain 

of the Weather Surveillance Radar-1988 Doppler net-

work (Stumpf et al. 2004). This composite is derived 

from the severe hail index (SHI, Witt et al. 1998), 

which was developed as a primary predictor for severe 

hail sizes (Witt et al. 1998). SHI was used as the 

baseline for a model of the maximum hail size by 

comparing SHI to actual observed hail-size reports. 

Witt et al. noted that thunderstorms generating large 

hailstones likely would have other, smaller hailstones 

falling at the same time. The authors argued that the 

most likely hailstone size reported would be a smaller 

size that fell over a larger spatial area rather than the 

largest stone that fell over a smaller spatial extent. 

MESH was defined as the hail diameter larger than 

75% of the hail observed from a given storm. Ortega et 

al. (2009) noted a wide range of measured hail sizes 

within a certain MESH value. Given these issues, 

MESH is used here as a proxy for likely hailfall size 

and location, rather than confirmation of the actual 

size of hail reaching the surface. 

 

 

3) NATIONAL LAND COVER DATABASE 

 The National Land Cover Database (NLCD) is a 

comprehensive database that provides land classifi-

cations across the United States. These classifications 

were determined by categorizing data acquired by the 

Landsat missions, with the first NLCD released in 

1992 (Homer et al. 2015). Since the initial release, 

there have been three updates: 2001, 2006, and 2011. 

The NLCD decision tree classifies every 30-m pixel 

across the United States into one of eight possible pri-

mary categories or among the 20 subcategories avail-

able, ranging from known water areas, to wetlands, 

various modes of agriculture, and various degrees of 

urbanization. Urban areas have similar spectral signa-

tures (lower NDVI, higher LSTs) to that of damaged 

areas, and any damage to vegetation scattered through-

out an urban area would occur at spatial scales not 

detected by MODIS. Areas of water result in small or 

negative values of NDVI and lower LST values owing 

to a higher specific heat capacity. In order to prevent 

pixels of urban areas and areas of water from being 

included, a mask was created from the NLCD to omit 

urban and water pixels from damage detection at-

tempts. 

 

b. Methods 

1) NDVI CHANGE THRESHOLDING 

 Previous studies focused on identifying areas of 

damage by identifying NDVI change from a pre-event 

composite and post-event image (Parker et al. 2005; 

Jedlovec et al. 2006; Gallo et al. 2012; Molthan et al. 

2013). In this study, an NDVI change product (thresh-

old hereafter) is developed from the methods described 

by Molthan et al. (2013) and Gallo et al. (2012). The 

pre-event composite is developed from a 14-day maxi-

mum of NDVI across the study region, as a 2-week 

period allows for multiple cloud-free views (Fig 2a). 

For example, a pre-event composite valid for a given 

event day represents the cloud-free maximum NDVI 

for that day and the prior 13 days, resulting in a uni-

form, pre-event composite to help improve the detec-

tion of decreased NDVI within potential damage areas. 

 Post-event single-day NDVI images were calcu-

lated from the MYD09GQ product beginning the day 

after an event (Fig. 2b). The post-event single-day 

NDVI (Fig. 2c) was then differenced against the pre-

event composite (Fig. 2d). Although the cloud-free 

portion of a damage swath is visible, lingering cloud 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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Figure 2. a) 14-day maximum NDVI composite from 5 August 2011 to 18 August 2011. b) Hail sizes from MESH over the period of 1200 

UTC 18 August 2011 to 1200 UTC 19 August 2011. c) Single-day NDVI image from 31 August 2011. d) NDVI threshold product created 

by the difference of the single-day NDVI image and composite image. In panels c) and d), the white pixels are clouds defined by the mask 

provided as part of the quality assurance band. 

 

cover may partially obscure a damage swath. To cap-

ture the full extent of the damage, difference images 

were generated daily for the 15 days following an 

event. These difference images were always created 

using the same pre-event composite (valid for the day 

of the event). Gallo et al. (2012) used visual compari-

sons of NDVI difference values and flagged pixels as

damage with an observed NDVI change of –0.15 or 

less. This study adopted the –0.15 change in NDVI 

used by Gallo et al. to classify a threshold product 

pixel as damaged because both studies shared the same 

regional focus. However, such a threshold may be 

regionally or seasonally dependent based on the af-

fected vegetation. 

 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_2.png
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2) ANOMALY DETECTION 

 Image-processing algorithms allow identification 

of damaged pixels from single-day imagery versus the 

generation of lengthy composites and a daily NDVI 

change product. In this study, an image-processing al-

gorithm was used to identify damaged and undamaged 

areas by first creating daily anomaly images as the 

difference between a small subset of pixels and the 

immediate background, converting the results to gray-

scale, and then passing them through a segmentation 

filter known as Otsu’s Method (Otsu 1979; Sahoo et 

al. 1988). Otsu’s Method creates a histogram from a 

grayscale image, and then automatically determines 

the point at which the histogram is divided into two 

segments labeled as the “background” and “objects.” 

For this study, the background represents undamaged 

areas of vegetation, and objects that stand out from the 

background represent potential damage areas in the 

vegetation. To improve the appearance of damage are-

as within the anomaly detection technique, individual 

single-day NDVI and LST (Figs. 3a–b) anomaly imag-

es characterize a pixel value against the local back-

ground (Figs. 3c–d). These daily anomaly images are 

created using two moving kernels: one larger, outer 

kernel representing the background kernel, and one 

smaller, inner kernel that is differenced against the 

background to identify the anomalies. The outer kernel 

is 50 km  50 km, and anomalies are calculated as the 

difference between the inner-kernel pixels and the 

median of cloud-free observations in the outer kernel. 

The 12.5 km  12.5 km inner kernel is large enough to 

resolve the typical 7–12-km width of previously docu-

mented hail swaths (Frisby 1963; Klimowski et al. 

1998; Parker et al. 2005) when compared to the sur-

rounding background, but could miss smaller features. 

Figure 4 shows how both kernels move throughout the 

image to calculate the anomalies, shifting 12.5 km 

through each iteration (first west-to-east before shift-

ing north once the iterator reaches the end of the do-

main). Outer kernels of various sizes (12.5, 25, and 50 

km) were examined objectively to determine the ap-

propriate size of the final kernel for this study (Bell 

2015). If the outer kernel is too small of an area, the 

kernel will not allow proper comparison between the 

inner kernel pixels and adjacent areas. Conversely, if 

the outer kernel is too large, then the inner kernel 

would also become too large to resolve potential hail-

damage streaks. These kernel sizes were for the 

MODIS instrument only and may need to be adjusted 

for other sensors of higher spatial resolution (i.e., 

Landsat-7 or 8, Sentinel 2, and DigitalGlobe World-

view). 

 Kernels were applied to a single-day image to pro-

duce daily NDVI and LST anomalies. NDVI anoma-

lies of –0.3 to 0.0 and LST anomalies of 0–3 K were 

stretched to byte values of 0–255 to create correspond-

ing grayscale images with at spatial resolution of 250 

m (Figs. 5a–b). Values were selected based on pre-

vious studies identifying damage areas with a lower 

NDVI and warming of the land surface. This caused 

the suspected damage areas to stand out in contrast to 

darker, undamaged pixels (background). Otsu’s Meth-

od was then performed separately on the NDVI and 

LST anomaly images to create a set of two binary 

images, one for suspected damage identified by NDVI 

anomalies (Fig. 5c) and another for suspected damage 

identified by LST anomalies (Fig. 5d). Pixels are 

flagged as damage when identified in both the NDVI 

and LST anomaly outputs (Fig. 6). 

 

3) TECHNIQUE VALIDATION 

 Unlike tornado damage surveys, formal ground 

surveys by the National Weather Service (NWS) are 

not conducted following widespread known or sus-

pected hail damage. In order to evaluate the perfor-

mance of the threshold or anomaly detection tech-

niques, post-event satellite imagery was used to iden-

tify areas of likely hail damage for each case study. 

These analyses were created subjectively by identi-

fying damaged areas using MODIS true-color and 

false-color composites, SPC storm reports of hail, and 

NSSL MESH data. True-color and false-color compos-

ites (Fig. 7) were analyzed for the clearest day 

observed from 11 to 15 days following a given event. 

Potential damage areas were identified and outlined 

using a polygon shapefile in ArcGIS. Parker et al. 

(2005) also used a geographic information system 

platform to create a satellite-analyzed dataset to out-

line the swaths of hail damage. This 11–15-day period 

encapsulates the post-storm period when crop owners 

will determine if crops will be able to recover or 

should be salvaged (R. Connelly 2015, personal com-

munication). As there are other ways of changing 

NDVI over short time-periods (e.g., harvest, burning, 

construction, etc.), hail fall was confirmed in the 

potential damage areas by consulting the NSSL MESH 

for sizes meeting or exceeding the 2.54 cm (1 in) NWS 

hail diameter criterion for a severe thunderstorm warn-

ing (Ferree 2016). A 5-km buffer was added around all 

MESH values >2.54 cm. (1 in) to account for any 
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Figure 3. a) Single-day NDVI image for 31 August 2011. b) Single-day LST image for 31 August 2011. The seam was created because of 

two different observation periods. c) NDVI anomaly image for 31 August 2011. d) LST anomaly image for 31 August 2011. The difference 

in LST from two different views from Aqua MODIS is apparent as a seam oriented from northwest to southeast in the anomaly calculation. 

Positive LST anomalies in northeastern Kansas were from an event that occurred on 19 August 2011. 

 

possible radar sampling and displacement errors (Fig. 

8) noted in the previous studies by Gallo et al. (2012) 

and Molthan et al. (2013). The displacement errors 

likely increased the damage detected downwind of the 

MESH swaths, but likely increased false detections 

upwind because the 5-km buffer was uniform around 

all areas where MESH was >2.54 cm (1 in). Each 

polygon shapefile was then converted to a 250-m reso-

lution raster to match the spatial resolution of the other 

datasets. 

 The MESH and NLCD mask datasets were used as 

constraints in the calculation of skill scores to limit 

analyses to vegetated areas that likely experienced 

severe hail. Only pixels that were observed to have 

overlapped with MESH values ≥2.54 cm (1 in) and 

were not classified as urban or water were considered 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_3.png
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Figure 4. Diagram showing how the kernel filtering moves through a series of iterations on an NDVI image from 31 August 2011. The 

kernels are projected to the projection of the satellite imagery. 

 

in the skill-scoring process. Several skill scores were 

calculated to quantify the performance of the two tech-

niques and evaluate their effectiveness in an NRT set-

ting. Imagery for up to 15 days after an event was 

broken into three 5-day periods following each event 

to find the highest quality observations (cloud-free, 

preferred satellite viewing angle) over the area of 

interest. The clearest day from each of the three 5-day 

periods was selected in assessing skill scores (Table 1) 

for both techniques. Definitions of a hit, miss, false 

alarm, and correct null were determined as follows and 

summarized in Fig. 9. A pixel was determined to be a 

hit if it was identified by the technique and inside the 

boundaries of the satellite-analyzed surveys. A pixel 

was classified as a miss if it was inside the satellite-

analyzed surveys, but was not identified by the tech-

nique. A pixel was determined to be a false alarm if it 

was identified by a technique but was not within the 

boundaries of the satellite-analyzed surveys and was 

identified to have experienced MESH values ≥2.54 cm 

(1 in). The raw NSSL MESH >2.54 cm (1 in) was used 

to simulate what datasets would be available in an 

NRT setting and what potential prob-lems may arise 

with using the raw MESH values. 

 
Table 1. Validation periods, names, and days following an event 

that comprise each period. 

Time Period Name Days After Event 

Short-term 1–5 days 

Mid-term 6–10 days 

Long-term 11–15 days 

 

 Skill scores included the probability of detection 

(POD), false alarm ratio (FAR), and critical success 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_4.png
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Figure 5. a) Grayscale image for NDVI anomaly image. b) Grayscale image for LST anomaly image. The seam shown in Fig. 2 is 

erroneously detected when calculating local anomalies and converting to grayscale. c) The classifier (background white, damage black) as a 

result of anomaly detection for the grayscale NDVI anomaly image. d) Same as c) but for grayscale LST anomaly, with the seam present. 

The damaged areas are consistent with the damaged areas in the NDVI imagery (Fig. 3a). 

 

 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_5.png
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Figure 6. Final anomaly detection product as the agreement among 

anomalies produced by the NDVI and LST anomaly processing. 

The anomalies detected around Lincoln, NE (LNK), and Sioux 

Falls, SD (FSD), are false anomalies (low NDVI, high LST) sur-

rounding urban areas that are masked out by the land-cover prod-

uct. 

 

index (CSI) following the techniques of Schaefer 

(1990): 

 

𝑃𝑂𝐷 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠
 (2) 

 

𝐹𝐴𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝐻𝑖𝑡𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 (3) 

 

𝐶𝑆𝐼 =  
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠+𝑀𝑖𝑠𝑠𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠
 (4) 

 

POD (2) describes the ratio of correct hits to the total 

number of hits and misses, or how well the individual 

techniques are predicting damage within the satellite-

analyzed surveys. FAR (3) is the ratio of false alarms 

to the total number of hits and false alarms and ensures 

that each technique is not misidentifying damage pix-

els outside of the satellite-analyzed survey. CSI (4) is a 

verification score that compares the number of hits to 

the total number of hits, misses, and false alarms de-

tected by the techniques. The ideal scenario would be 

a POD of 1.0 to indicate that the two techniques cor-

rectly identified pixels as damage in a perfect match to 

 

Figure 7. a) True-color red-green-blue (RGB) composite. b) Color 

infrared RGB composite. c) False-color RGB composite. All three 

of these RGB composites were used to create satellite-analyzed 

surveys for validation in each case study.  

 

the satellite-analyzed surveys with no false alarms or 

misses. However, this ideal scenario is not likely given 

the nature of the satellite-analyzed surveys. These sat-

ellite-analyzed surveys may over-sample areas of po-

tential damage, or they may miss areas of potential 

damage from case to case. Overall, an ideal algorithm 

will achieve a high POD while also achieving a low 

FAR, resulting in a relatively high CSI. 

 

3. Analysis and discussion 

 The two techniques were each tested on three case 

studies to evaluate their effectiveness for an NRT 

application. All case studies occurred in agricultural 

areas of the Midwest. Two of the case studies were 

repeated from the analysis of events documented by 

Gallo et al. (2012) and Molthan et al. (2013). 

 

a. 18 August 2011 

 During the late afternoon of 18 August 2011, 

several supercells developed in southeastern South 

Dakota and propagated southeastward into Nebraska, 

Iowa, and eventually into Missouri during the over-

night hours. The SPC 1630 UTC convective outlook 

(www.spc.noaa.gov/products/outlook/) had this region 

http://www.spc.noaa.gov/products/outlook/
http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_6.png
http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_7.png
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Figure 8. a) True-color RGB with MESH ≥2.54 cm (1 in) masked with partial transparency. Areas of damage that are offset from the 

MESH are annotated. b) Same image as a) but with 5-km MESH buffer outlined in black. 

 

 
Figure 9. Diagram to visually represent how components of the 

skill scores were determined. Representative examples of various 

categories are shown. Damaged pixels (black) represent damage 

detected by a hypothetical technique. The data for this example 

were taken from the 18 August 2011 case referenced in the text. 

 

under a slight risk with the highest probability of spe-

cific severe weather being damaging winds [30% like-

lihood of ≥50 kt (58 mph)] with a slightly lower 

probability of severe hail [15% ≥2.54 cm (1 in)]. For 

this event, the SPC storm reports received nearly 200 

reports of damaging winds and >150 reports of severe 

hail. There were 19 significant hail reports [≥5.08 cm 

(2 in)] with the largest report of 10.8 cm (4.25 in) 

occurring southwest of Yankton, South Dakota. 

 Vegetation damage was apparent in satellite im-

agery the next day (19 August 2011) with damaged 

areas prevalent in southwestern Iowa, northwestern 

Missouri, southeastern South Dakota, and northeastern 

Nebraska. Molthan et al. (2013) used higher resolution 

satellite datasets to document the change, in addition 

to looking at MODIS NDVI change. The threshold 

technique showed an area of small, negative NDVI 

changes in the same areas where the damage was 

visible. When evaluated with the satellite-analyzed 

surveys, the threshold technique had a POD of 0.284, 

and the anomaly detection technique had a POD of 

0.298. Both methods produced slightly higher FARs 

(Table 2) for the short-term validation period, but 

these FARs decreased for the mid-term validation 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_8.png
http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_9.png
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Table 2. Skill scores for the threshold (THRSH) and anomaly (ANOM) techniques used in the 18 August 2011 case study. 

Validation 

Period 
Date 

POD FAR CSI 

THRSH ANOM THRSH ANOM THRSH ANOM 

Short-term 19 August 2011 0.284 0.298 0.373 0.270 0.243 0.287 

Mid-term 25 August 2011 0.404 0.338 0.188 0.256 0.369 0.303 

Long-term 31 August 2011 0.497 0.317 0.384 0.197 0.380 0.294 

 

period. The POD of both techniques increased, with 

the threshold technique having the highest POD for the 

mid-term validation period at 0.404. By the long-term 

validation period, the highest POD for the thresholding 

technique was achieved as the vegetation had 13 days 

to respond to impacts from the damaging hail (survive, 

wilt, or decay). The true-color red-green-blue (RGB, 

Figs. 10a–b) highlights well-defined areas of damage 

present throughout the domain by the long-term 

validation period. The threshold technique had the 

highest POD of the two techniques at the long-term 

validation period with a POD of 0.497; and the POD 

of the anomaly detection technique was 0.317 (Figs. 

10c–d). The FAR of the threshold technique increased 

from 0.188 during the mid-term period to 0.384 for the 

long-term period. The FAR increasing in the thresh-

olding technique from the mid-term and late-term val-

idation periods potentially can be attributed to NDVI 

values of corn and soybeans beginning to drop rapidly 

by late August (Fig. 1). Because the thresholding tech-

nique utilizes pre-event imagery, the change between 

then and now may meet the threshold, which is used to 

identify damage. The FAR of the anomaly detection 

technique dropped from 0.256 in the mid-term valida-

tion period to 0.197 during the long-term validation 

period (Figs. 10e–f). The CSI of the two techniques in-

creased between the short-term (threshold = 0.243 and 

anomaly = 0.287) and long-term (threshold = 0.380 

and anomaly = 0.294) validation periods. 

 

b. 9 August 2009 

 During the mid-morning hours of 9 August 2009, 

severe storms with damaging winds and large hail 

moved eastward across Iowa and resulted in a line of 

nearly continuous SPC storm reports across the state. 

Many of these hail reports were <5.08 cm (2 in), but 

one storm report in central Iowa had hail of 7.62 cm (3 

in) in diameter. These storms were responsible for 

$169.9 million in damage to agricultural crops (Gallo 

et al. 2012). 

 The short-term validation period threshold tech-

nique showed swaths of negative NDVI changes in a 

west-to-east orientation. These same areas lined up 

with the satellite-analyzed surveys and led to an initial 

POD of 0.428, FAR of 0.397, and CSI of 0.334 (Table 

3). Most of the false alarms were identified along the 

MESH swaths east of the satellite-analyzed surveys. 

The anomaly technique applied in the short-term vali-

dation period identified most of the damaged areas but 

failed to identify some of the western extent. These 

missing damaged areas led to a POD of 0.433 and CSI 

of 0.353 for the anomaly technique. The anomaly 

technique had a lower FAR than the threshold tech-

nique at 0.344, indicating that this technique was not 

picking up on many damaged pixels outside the ana-

lyzed survey areas. 

 This event did not have a mid-term validation peri-

od as days 6–10 were too cloudy to validate the thresh-

old or anomaly detection techniques. Clearing skies 

allowed for a long-term validation period with the 

damaged areas being more apparent than in the short-

term event. The long-term, true-color RGB displays 

the damage in a west-to-east orientation with more 

definition than during the short-term validation period 

owing to continued wilting and other processes (Figs. 

11a–b). This was confirmed with the POD of the 

threshold technique increasing to 0.647 and CSI 

increasing to 0.571. In contrast to the increase in both 

POD and CSI, the FAR of the threshold technique 

dropped to 0.170 (Figs. 11c–d). The long-term POD of 

the anomaly technique also increased to 0.587 as the 

technique was able to resolve damage on the western 

edge. The long-term FAR for anomaly detection also 

dropped to 0.268 (Figs. 11e–f). 

 

c. 3 June 2014 

 Several rounds of severe storms moved southeast-

ward from south-central South Dakota through the 

eastern third of Nebraska on 3 June 2014. The storms 

began around mid-morning with the last round occur-

ring during the evening hours. The local weather ser-

vice offices received multiple reports of large hail in 

excess of 10.16 cm (4 in) in diameter. Several damage 

swaths were seen over the area in the weeks that 

followed. Although the algorithms applied attempted 

to detect damage for all of the damage swaths during 

all validation periods, daily cloud cover restricted 

observations over portions of two of the swaths. This 
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Figure 10. a) True-color RGB from the 31 August 2011 long-term validation period. b) Same as a) 

but with satellite-analyzed surveys outlined in red. c) Long-term validation period NDVI change 

threshold product. d) NDVI change threshold product with MESH values ≥2.54 (1 in) in grayscale. 

The satellite-analyzed surveys are shown as an outline. e) Long-term validation period anomaly 

detection. f) Same as d) but for the anomaly detection product. 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_10.png
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Table 3. Same as Table 2 except for the 9 August 2009 case study. 

Validation 

Period 
Date 

POD FAR CSI 

THRSH ANOM THRSH ANOM THRSH ANOM 

Short-term 12 August 2009 0.428 0.433 0.397 0.344 0.334 0.353 

Mid-term N/A       

Long-term 24 August 2009 0.647 0.587 0.170 0.268 0.571 0.483 

 
 

 

Figure 11. Same as Fig.10 but valid for the long-term validation periods on 24 August 2009. 

 

case study was able to focus on one streak that was 

observed under mostly clear skies, but only for the 

mid- and long-term validation periods. 

 Persistent cloud cover prevented areas of the mid-

term validation period from having areas for compari-

son. In the middle of the domain there were several 

areas of negative NDVI change. Despite these dam-

aged areas being visible in the threshold technique 

product, the NDVI change threshold did not pick up 

on a large number of damaged pixels. When compar-

ing the damaged areas to the satellite-analyzed survey, 

the threshold technique had a POD of 0.079 and CSI 

of 0.063 (Table 4). The low CSI resulted from the high 

FAR (0.758), indicating that the majority of the pixels 

that were identified by the NDVI change threshold 

were outside the satellite-analyzed surveys. The anom-

aly technique performed much better in the mid-term 

validation period with a higher POD (0.418) and CSI 

(0.221) and a lower FAR (0.681). Anomaly detection 

was successful in picking up small NDVI and LST 

anomalies that were present in the images. The anom-

aly detection technique identified the majority of dam-

age in the southeastern polygon associated with the 

analyzed survey, whereas the threshold technique did 

not. 

 Like the previous two case studies, damage is ap-

parent in the long-term, true-color RGB for the 3 June 

2014 case study (Figs. 12a–b). The damage in south-

central Nebraska occurred where radar imagery (not 

shown) identified a supercell splitting into two dam-

aging storms, resulting in two separate streaks with a 

small gap between them. In the previous two case 

studies, vegetation continued to wilt or decay with 

time, and damage became more apparent, creating a 

stronger signal for detection. In this case, wilting was 

less apparent because the vegetation in early June con-

tinued to grow, especially in the areas surrounding the 

damaged vegetation. NDVI values in June increased 

rapidly between the beginning and end of the month 

(Fig. 1), so any vegetation that was damaged likely 

was overtaken by non-damaged vegetation that contin-

ued growing. The lack of apparent damage lowered the 

POD and CSI of the threshold technique to 0.068 and 

0.060, respectively (Figs. 10c–d). The long-term FAR 

for the threshold technique decreased to 0.661. Dam-

aged vegetation in the threshold technique may have 

been more easily identified by increasing the threshold 

of NDVI change to a value greater than –0.15 (e.g.,  

–0.10 or –0.05). The FAR and CSI associated with the 

anomaly detection technique improved between the 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_11.png
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Table 3. Same as Table 2 except for the 3 June 2014 case study. 

Validation 

Period 
Date 

POD FAR CSI 

THRSH ANOM THRSH ANOM THRSH ANOM 

Short-term N/A       

Mid-term 13 June 2014 0.079 0.418 0.758 0.681 0.063 0.221 

Long-term 17 June 2014 0.068 0.399 0.661 0.539 0.060 0.272 

 
 

 
Figure 12. Same as Fig. 10 but valid for the long-term validation period of 17 June 2014. 

 

mid-term and long-term validation period. The FAR 

decreased to 0.539 and the CSI increased to 0.272. The 

long-term validation period POD for the anomaly de-

tection technique did decrease to 0.399, but was still 

much higher than the threshold technique (Figs. 10e–

f). 

 

http://www.nwas.org/jom/articles/2016/2016-JOM11-figs/figure_12.png
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d. Discussion 

 Three case studies compared two different tech-

niques that could be used in an NRT product for iden-

tifying hail-damage swaths. These case studies clari-

fied strengths and limitations of the two techniques—

important for determining which to implement in an 

NRT setting. 

 The NDVI change threshold technique resulted in 

the highest POD for damage detection during the 18 

August 2011 and 9 August 2009 case studies and the 

lowest POD for the 3 June 2014 case study. Both the 

POD and CSI increased between the first available 

validation period and the long-term validation period 

for the two case studies that occurred in late summer. 

The increase in POD and CSI reaffirmed that a strong-

er NDVI change may appear further in time from an 

event, caused by the wilt and decay or potential 

harvesting of the damaged vegetation. The threshold 

technique did not perform well in the 3 June 2014 case 

study—an early growing season event. A negative 

NDVI change was observed, but the threshold of –0.15 

made it difficult to identify pixels as damage that 

would be counted towards validation because the pre-

event NDVI was relatively low with young crops still 

maturing, and damage did not produce an NDVI 

change at the –0.15 threshold. The –0.15 threshold pre-

sents two challenges for early season cases. First, it 

can be difficult to obtain a large decrease in NDVI 

when crops are beginning to grow and NDVI is rela-

tively low. Second, crops may be less susceptible to 

damage early in the season or are able to rebound 

more easily, resulting in a decrease in the magnitude 

of NDVI change. Earlier in the season, agricultural 

areas will not see the same pre- and post-event NDVI 

change signal as they would in events later in the 

growing season. 

 In all three case studies, the anomaly detection 

technique produced similar or higher POD scores com-

pared to the NDVI change technique. The anomaly 

detection technique identified areas of damage that 

were visually apparent in all of the short-term valida-

tion periods, including the 3 June 2014 case study in 

which the mid-term validation period was first. These 

damaged areas continued to remain present throughout 

all the remaining validation periods. The POD and CSI 

scores of the three events increased between the short- 

and mid-term validation periods and the long-term 

validation periods, although FAR scores decreased. As 

with the threshold technique, damage became more 

apparent with longer time for crops to wilt and decay, 

resulting in a larger NDVI change that followed a 

severe hail event. In the case of the anomaly detection 

technique, anomalies in the NDVI and LST imagery 

become more apparent as vegetation wilts and decays, 

exposing the surface. This allows the final anomaly 

detection product (combined individual NDVI and 

LST anomaly products) to identify more objects as 

damage in the correct areas when evaluated against the 

satellite-analyzed surveys. 

 These case studies compared two different tech-

niques that could be used in an NRT product for iden-

tifying swaths of hail damage to crops. Based on their 

performance, the anomaly detection technique would 

be recommended for an NRT product because of its 

consistent performance over the entire growing season 

and the use of single-day imagery, whereas the thresh-

old technique relied on multi-day composites. Both the 

threshold and anomaly detection techniques performed 

well with late-season events (i.e., July and August), 

but anomaly detection performed better than the 

threshold technique in the early season case (i.e., 3 

June 2014). This anomaly detection technique would 

benefit from better cloud detection, as the MODIS QA 

dataset missed several areas of clouds and cloud edges, 

which returned false alarms. 

 

4. Conclusions and future work 

 Satellite remote sensing has been used to identify 

areas of damage to vegetation as a result of severe 

thunderstorms that bring damaging winds and large 

hail. These areas of damage are especially prevalent 

across the central United States during the peak grow-

ing season. In previous studies (Parker et al. 2005; 

Gallo et al. 2012), these areas of damage were iden-

tified through manual analysis, which is inefficient and 

time-consuming. This study evaluated two different 

techniques to identify areas of damage and assessed 

the strengths and weaknesses of each one in three case 

studies before determining which one would be best 

suited for an NRT algorithm. 

 The first technique looked at short-term changes in 

NDVI that met a certain threshold, similar to previous 

studies. Differences were obtained from the pre-event 

14-day maximum and a post-event, single-day NDVI 

image. Pixels were determined to be damaged if they 

had an NDVI change of ≤–0.15. The thresholding 

technique had a higher POD in the long-term vali-

dation period than the anomaly technique in two of the 

three case studies, but struggled with an early season 

event. The POD increased in two of the three case 
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studies, indicating that as time moved further from the 

actual event, the effects of damage on vegetation were 

more easily identifiable. 

 The second technique detected local NDVI and 

LST anomalies in the imagery by passing the single- 

day imagery through kernel filters that could detect 

hail swaths. Damaged areas have a lower (higher) 

NDVI (LST) when compared to the immediate back-

ground. Each of the NDVI and LST anomaly images 

were converted to grayscale and processed further with 

Otsu’s Method, identifying damaged areas as objects 

against an undamaged background. This technique 

performed well in all three case studies, including an 

early season event during seasonal green-up. 

 The techniques described herein can be used to 

identify areas of vegetation damaged by hailstorms 

instead of performing a manual analysis. Use of NDVI 

and LST products for damage detection remains lim-

ited, and validation of products remains challenging 

without an official ground validation dataset. Future 

work continues to address the challenge of validating 

these techniques against available ground survey data-

sets. Multiple methodologies exist that can success-

fully detect damaged areas, and future work and anal-

ysis should continue to explore all possible combi-

nations of methodologies, satellite, and non-satellite 

datasets to create and maintain the best possible de-

tection. Given improvements in the automated detec-

tion of crop damage, these efforts may benefit esti-

mates of crop loss for comparisons against reported 

loss estimates. Expanding this NRT algorithm to the 

identification of vegetation damage caused by other 

aspects of severe weather (e.g., damaging winds and 

tornadoes) could be done by using additional radar 

products such as azimuthal shear and rotation tracks 

from NSSL. 
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