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ABSTRACT

This study analyzes the performance of five satellitderived precipitation products relative to ground-
based gauge observationg.he satellite products estimate precipitation using passive microwave (PMW) and/
or infrared (IR) observations. Differences in these observation methods lead to seasonal and regiobises
that influence the operational utility of the satellite precipitation estimateslin turn, these products require
informed interpretation by forecasters. Five years of daily satellite precipitation estimates (20104) are
composited into two types ofeasonal and annual maps to characterize performancéhe seasonal composites
reveal positive biases during summer and greater variability among satellite products during winteiEach
satellite product overestimates the maximum daily precipitation relatie to gauge throughout much of the
central and eastern United Statesln this region, the 9%h percentile of gaugereported daily precipitation
values generally range between 28nd 40 mm day®, whereas the satelliteeported values generally exceed 40
mm day'*. Winter exhibits greater variability among satellite products with a mix of both positive and
negative biasesThe bias magnitudes are greater and the spatial correlations are lower (i.e., the composite
maps are less similar) during winter than during summer. The IR-based products generally overestimate
winter precipitation north of 36°N, and the PMW-based products performed poorly in mountainous regions
along theWestCoast. These results characterize biases in satellite precipitation estimates to tegtinform the
user community and help researchers improve future versions of their operational products.

1. Introduction The present study expands upon the ongoing €ICS

Successful use of satellitierived precipitation MD validation efforts, and complements satellite
estimates requires verification at various spatial angerformance statistics documenteg fnany previous
temporal scalesThe Cwperativelnstitute for Climate studies (e.g., Arkin and Meisner 1987; Adler et al.
and Satellites at the University of Maryland (CICS 1993; Ebert et al. 1996, 2003, 2007; Joyce et al. 2004;
MD) produces daily andeasonal validation statistics Tian et al. 2007; Sapiano et al. 201Dhis manuscript
over the contiguous United States (CONUS) for mangummarizes the performance of satellite precipitation
precipitation products using a common Internationaéstimates so that Natial Weather Service (NWS)
Precipitation Working Grau (IPWG) framework. forecasters can better apply these products.

This routine monitoring focuses on products produced Satellite precipitation estimates are analyzed at
by the National Oceanic and Atmospheric Administraannual and seasonal time scales to document their
tion (NOAA) and the National Aeronautics and Spaceaccuracy and precisiokVe composite daily validation
Administration (NASA).A website is updated daily to statistics routinely producedt CICSMD to investi
provide monitoring and valation tools to operational gate factors contributing to seasonal and regional
users and algorithm developerdgc6.umd.edu/ipwd/  biases in the satellitderived precipitation estimates.
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Networks of grounébased gauges and Weather-Sur2. Data and methods
veillance Radaf 988 Doppler (WSR8D) radars are
the two most common toolsorf validating satellite
precipitation products over the CONUSalidation The satellite precipitation estimates evaluated
over multiyear periods provides many benefits,herein represent the most common operational- pro
including the study of interannual variations in globalducts as well as a variety of algorithm techniques and
mean precipitation, as well as the identification ofobservation platformsProduct providers periodically
biases related to synogdily produced precipitation implement updated versions to incorporate new sen
(Janowiak et al. 2005)Recognition of systematic sors and/or algorithm techniques, which introduces
biases can help forecasters make more informed desome additional variability that we do not examine.
sions using the products available to thdinis study This study evaluates the operational versions of the
illustrates conditions under which the various productsarious products as they were provided in neat

are reliableversus when and where additional cautiortime.

must be taken. The NASA Tropical Rainfall Measuring Mission

Satellite precigation is estimated using both (TRMM) Multi-Satellite  Precipitation  Analysis
infrared (IR) and passive microwave (PMW) sensors(TMPA, Versions 6/7) includes a 3B42RT product that
IR-based products are derived from clgog bright combines PMW and PMWalibrated IR to estimate
ness temperatures, which are less closely dklade precipitation in near reagime (Huffman et al. 2007).
surface rainfall rates than PMW, but the learth 3B42RT refers to a combination of the TRMM real
orbiting PMW sensors provide less frequent samplingime merged passive microwave (3B40RT) and micro
than the geostationary IR sensors (Arkin and Xiavavecalibrated IR (3B41RT) productsPMW rain
1994). Ebert et al. (2007) and Sapiano et al. (2010)yates are first intecalibrated using thecombined
showed that PMW estimates outperform IR esttwa TRMM Microwave Imagerand Precipitation Radar
but found that a combination of the two producegproduct, which is then used to calibrate the IR input
superior resultsThe satellite precipitation estimates (Huffman et al. 2007)The PMW and IR are then
analyzed herein use various algorithms and sensomnsidered comparablenough to be combined, using
which introduce a unique set of biases into eackthe PMW data where available and IR data in PMW
product. Systematic biases in the satellitetimates coverage gaps (Sapiano and Arkin 2009)e combi
accumulate over time, influencing flood monitoring, nation of PMW and IR data mak8B42RT most sim
surface runoff studies, and the study of global climatédar to the Climate Prediction Center (CP@rphing
change (Tian et al. 2007). technique (CMORPH).

The present study analyses five years (204) of CMORPH also blends PMW and geostationary IR
daily satellite precipitation estimates from five differ observations (Joyce et al. 2004; Joyce and Xie 2011).
ent NOAA and NASA products ovethe CONUS CMORPH uses PMW estimates from all available
Five years of data helps reduce impacts of individuadensors, including those on the NOAA pedabiting
synoptic events, allowing analysis of precipitationoperational meteorological satellites, the United States
patterns on seasonal and annual scélesly opera Defense Meteorological Satellites Program, and
tional applications require accurate precipitation-estiTRMM. CMORPH only directly uses PMW radiances
maies, so this study examines daily composites dio estimate precipitation (i.e., the IR radiances are not
operational products that are provided to forecasters ased directly). Consecutive IR images are used to
finer temporal resolutions (i.e., those with update frecompute precipitating cloud system advection vectors,
guencies<24 h). Although some of the variability in which are then used to propagate and interpolate in
the finerresolution products mixes out dhe daily stantaneous PMW observations in a combined-time
scale, the daily composites are sufficient to describgpace domain (Joyce et al. 2004, Joyce and Xie 2011).
the general performance tendenci&ection 2 de Thus, CMORPH uses the PMW to estimate instantan
scribes the satellite, radar, and gauge precipitatiomous precipitation and the JRerived motion vectors
products as well as the validation methioSection 3 for propagation (Joyce and Xie 201Tjhe direction
presents results on both seasomall annual time and speed of IR cloud tops may not always correlate
scales.Section 4 discusses the results and highlighteell with the propagation of the precipitation at lower
important knowledge required to best apply the satelevels, motivating development of a speed adjustment
lite precipitation estimates in operations.

a. Data
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procedure to modify the motion vectors and cdrfec  areas relative to their surroundings (Scofield and-Kuli
this (Joyce et al. 2004). gowski 2003; Sapiano and Arkin 2009).

The National Environmental Satellite, Data, and A composite of NWS WSR8D radar data also is
Information Service (NESDIS) Se@alibrating Multt  evaluated alongside the satellite and gauge estimates.
variate Precipitation Retrieval (SCaMPR) product onlyThe National Centers for Environmental Prediction
uses IR observations directly, but the algorithm-cali(NCEP) merges WSR8D radar data with gauge
brates IR datagainst PMW observations (Kuligowski observations to producenulti-sensor precipitation
2002; Kuligowski et al. 2013)The product selects estimates (Stage Il/1V; Lin and Mitchell 200&auge
from a set of possible predictors, including three of thedjusted radar products (e.g., Stage 1V) outperform the
Geostationary Operational Environmental Satelliteradaronly Stage Il analysisHowever, the present
(GOES channels and two other satelltased precip study uses the radanly Stage Il product with no bias
itation estimates (Kuligowski 2002; Kuligowski et al. correctionto help illustrate the limitations of remdge
2013).The algorithm routinely calibrates the relation sensed products derived from a single souiidee
ship between the IR brightness temperatures and rairadaronly product merges estimates from all indi
rate estimatesin this way, SCaMPR combines the vidual WSR88D radars onto the national Hydrologic
more accurate PMW precipitation estimates with thdRainfall Analysis Project (HRAP) gridBins contain
more frequently available and higher spatial resolutioing mae than one radar estimate are averaged using
IR observationsFor a small number of cases, kuli simple inverse distance weighting, and the ramdy
gowski (2002) found that SCaMPR had smaller overakstimates are not quality controlled (e.g., no removal
bias(and bias as a function of rain ratean other IR of anomalous propagationAlthough biases in radar
based precipitation estimatésowever, Kuligowski et  derived precipitation vary neaniformly over indvid-
al. (2013) showed that during extended periods of dryal radar domains as a function of range, azimuth, pre
weather or very light rain, the most recent SCaMPRipitation type, and other factors, this ramiformity
calibration became trained for little or no rain, andhas not been corrected for in our radar data.
thus performed very poorly for heavier precipitation.  The CPC unified global daily gauge analysis-pro
Although this was adjusted wheSCaMPR began vides the ground truth for this studihis global gauge
running in reatime during November 2004, regions dataset includes ~3200 daily reports during the his
remain where SCaMPR performs poorly for heawytorical period of 19762006, and ~17000 daily real
precipitation.Based on the results of Kuligowski et al. time reports since 2007Xige et al. 2010). Quality
(2013), the reatime version of SCaMPR was medi control is performed through comparisons with histori
fied to correctfor bias using TRMM d@a, which re  cal records, independent measuemts from nearby
duced both the occurrence and volume of false precigtations, concurrent radar/satellite observations, and
itation detections. numerical model forecasts (Xie et al. 2010he

In addition to the three blended PMW/IR productsguality controlled station reports are interpolated to
we also analyze two Hanly productsThe CPC uses create daily precipitation estimates that consider oro
IR observations to produce tBOESPrecipitation 1A graphic effects (Xie eal. 2007).An optimal inter
dex (GPI; Arkinand Meisner 1987)GPI is a function polation technique is usethecausethat presents the
of 1) the mean fractional coverage of clouds coldebest skill for both daily and monthly precipitation (Xie
than 235K in 0.252 0.25° grid cells, 2) the length of et al. 2007; Chen et al. 2008)he daily CPC analysis
the averaging period in hours, and 3) a numerical cons constructed on a 0.125° latitude/longitude grid over
stant (Arkin and Meisner 1987kPI uses only IR data all global land areas, and is objectively analyzed to a
over the CONUSbecausehere are no geostationary 0.25 latitude/longitude grid for the present study
IR coverage gapShe NESDIS HydreEstimator pre  using the Cressman (1959) invedistance weighting
duct also usesGOESIR data, but corrects for the interpolation algorithmsObjective analysis techniques
evaporation of raindrops to help improve accuracyhave been shown to broaden the spatial coeecdg
Based on the NESDIS AuBstimator algorithm very light precipitation observations and dampen the
(Vicente et & 1998), the HydreEstimator defines intensity of heavy rainfall events (Ebert et al. 2007).
pixels as raining if their temperatures are below thd he resulting gauge data provide the best characterized
average temperature for the surrounding afe@e  estimate of precipitation at the surface owke
greatest precipitation rates are assigned to the coldésONUS
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a. Methods gauge estimatesBias frequency histagms better
depict the product accuracy for each annual and sea

Five years ofdaily precipitation estimates (2010 . . :
14) were composited into two types of seasonal angPn@ time period than the average biases. exar
le, a satellite algorithm might have a small average

annual mapsThese composite maps help validate and . . ) -
understand the performance of the precipitation est las but a wide spread with both large positive and

mates.A conditional threshold of 0.1 mm ddywas o 9° negative biasein this cag, the small average
used throughat this study to reduce contamination bias (apparently good performance) would not accu

from very light precipitationAverage conditional and rately represent the performance of the daily satellite

_ ) AT . estimates.
maximum (9%h percentile) precipitation composite o .
maps were produced on a 0.2590.25° grid overthe The probability of detection (POD) andfalse

A ) i alarmratio (FAR) are the final statistics used to inves
CONUS Al precipitation obseirvqtlonso.l mm dayl tigate the dewion accuracyThe POD is the fraction
were sumrad within the 0.25° grid cells over various

time periods to compute sugomposite mapsAver- of instances where the gauge measues mm day/
P P P pS: for which the satellite also estimates precipitati@nl

age conditional composite maps then were created by, day*. The FAR is the fraction of instances where
dividing the sum composites by the number of days "the satellite estimates0.1 mm dalt for which the
each grid cell when the corresponding product ("e'gauge measures0. 1 mn.1 dal. The POD and FAR

satelite, radar, or gauge) observed precipitatieh1 . o .
mm day’. Thus, this study examines the averdge arecalculateconly for grld cells with2 30 observations
to ensure representative samples.

days with precipitation, not the daily average precipi ) )
tation. Maximum precipitation composite maps signify This study o_nIy mcludes days when the gauge,
radar, and all five satellite products are available.

the 93h percentile of daily rainfall at eaarid point lssues with thedaily data feeds led to missing or

during the specified time periodhe average condi incomplete data records, and many of these missing

tional composites characterize precipitation estimate ata remain unrecoverable without considerable effort
from the entire period (2014), whereas the maxi Il seven sources are available for 327 (2010) 346
mum composites represent values observed on indivi h011), 195 (2012), 274 (2013), and 320 (2014) ’da S
ual days (i.e., the heaviest pigiation events)The I‘j’ather’ tha ending |1nielseason t’he analysis is exteng .
composite maps form the basis for our analysis, and aéd into January and February 2015 (55 additional

of the statistics described herein are derived from thesoeays).There are 353, 396, 388, and 376 days during

annual and seasonal composites. all, winter, spring, and summer, respectively (with the
The average conditional and maximum composite% ’ » SPring, and €r, resp y
argest outage occurring during fall 2012he 5-yr

were used to calculate several statsstic investigate U _ ,
performance period is sufficient to examine seasonal

the product performanc&patial bias maps were ere o T .
ated by differencing satellite composites with thepattern_s with limited interference from diyday
synoptic systems.

gauge and radar compositeSeasonal and annual
composite maps also were spatially correlated witté Results
their corresponding gauge and radammposites to =
explore spatial similarities among the composite maps. Average conditional composites of daily precipita
The correlations and spatial bias maps quantify thgon illustrate the spatial distribution dhe satellite,
overall product accuracy and also capture the seasomadar, andgauge estimates ovéhe CONUSduring
and regional variabilityAverage biases were comput 2010 14 (Figs. 12). The average conditional compos
ed to provide CONUSvide baselines for the seasonal ite maps depict the average precipitation rate when
and regional analysesthese average biases result>0.1 mm day is observedFigure 1 reveals that the
from averaging biases from all of the 0.25° grid celllCMORPH (panel a), gauge (c), and radar (d) observe
in the various annual and seasonal compositesf@ire., similar precipitation patterns, with average conditional
13191 CONUS grid cells). precipitation rates10 mm day’, 6 mm da}!, and 5
Bias frequency histograms expand beyome t mm day', respectively, over the Great Plains and
average bias values to show the distribution of biasesutheasterfCONUS. Average conditional precipia
within each composite mafhese histograms illus tion values generally aré4 mm day' west of the
trate the skewness and spread in the distributions, a&teat Plains, with the exception of large gauge values
facilitate associations among the PMW, IR, radar, andlong the West CoasEigure 1d also reveals radar
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Average Conditional Composites (2010-14)
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Figure 1. Average conditional precipitation composites otle CONUS during 201014 for (a) CMORPH, (b) radar minus gauge, (c)
gauge, (d) radar, (¢) CMORPH minus gauge, and (f) CMORPH minus radar. Average conditional composite maps result frortheumming
precipitation in each grid cell on days wit@.01 mm day} and diiding by the number of days when the satellite, gauge, and/or radar
observed>0.01 mm day. Click image for an external version; this applies to all figures hereafter.

ISSN23256184,Vol. 4, No.5 62


http://www.nwas.org/jom/articles/2016/2016-JOM5-figs/Figure_1.png

Rudloskyetal. NWA JournafOperationdieteorology 1 March 2016

Figure 2. Average conditional precipitation composites otfer CONUS during 201014 for (a) SCaMPR, (b) 3B42RT, (c) GPI, and (d)
Hydro-Estimator. Average conditional composite magisvelopedas inFig. 1

coverage issues in the west&@NUS (using the ra  generally underestimates precipitation by53mm
daronly Stage Il product). day* relative to gauge.

Figureslb, 1le, and 1f illustrate differences (bias Figure 2 displays the average conditional compos
es) between the average conditional precipitation-conites for the four additional satellite precipitation esti
posites.These spatial bias maps result from subtractmation products (20104). 3B42RT (Fig. 2b) most
ing the average conditional gauge composites from thedosely resembles the CMORPH, gauge, and radar
average conditional satellite and radesmposites. composites (Fig. 1), while the three remaining $igel
Over large portions of the Great Plains, CMORPHproducts (Fig. 2a,c,d) exhibit considerably greater
generally overestimates precipitation 3§ mm day' values.The corresponding spatial bias maps reveal
relative to gauge (Fig. 1e) ané mm day’ relative to  that spatial bias patterns for SCaMPR and 3B42RT
radar (Fig. 1f).The radar minus gauge bias is betweer{not shown) are most similar to CMORPH (Fig. 1e).
+2 mm day" over large portionsf the CONUS (i.e., Conversely, the greatest GPl and Hy&stimator
white grid cells, Fig. 1b)The radar and gauge grids overestimates occur outside of the Great Plalime
differ along the West Coast and in large parts of thgreatest GPl overestimates are in tharthwestern
easterrCONUS where the radaonly Stage Il product CONUS(4i 8 mm day'), and the greatest Hyd#esti
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