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ABSTRACT

The nine-member High-Resolution Rapid Refresh Ensemble (HRRRE) is evaluated for its ability to
forecast five Atmospheric River (AR) events that impacted California in February—March 2019. Two sets of
retrospective HRRRE simulations are conducted, a control with the standard set of perturbations (initial
and boundary conditions, stochastic parameters, and physics tendency), and an experiment with initial
and boundary perturbations only. Reliability plots suggest the HRRRE control represents the observed
Stage IV precipitation frequency well at 6-h to 24-h lead times, and rank histograms suggest the ensemble is
slightly underdispersive. The HRRRE overpredicts precipitation frequency at the higher (25 mm) threshold.
These results suggest the HRRRE is a useful tool to quantify probabilistic forecasts of AR events in this
region. Removing stochastic physics perturbations did not substantially impact probabilistic forecasts,
suggesting most of the ensemble spread is from initial and boundary condition perturbations. Spatially,
ensemble precipitation coefficient of variance is lower (less forecast uncertainty) over the Sierra Nevada
range than other regions, suggesting that these ensemble perturbations have a smaller impact on
precipitation processes occurring over the Sierra Nevada range. More work should be conducted to
understand the impacts of other model perturbations, such as microphysics, on ensemble performance, and
to improve Stage IV accuracy with frozen precipitation in mountainous regions.

1. Introduction

Accurate forecasts of the timing, intensity, and
location of precipitation and winds can improve
preparation for and reduce the negative impacts from
Atmospheric River (AR) events, such as flooding,
mudslides, and strong winds (Corringham et al. 2019).
ARs, long (2000 km or greater) and narrow (300-500
km wide) plumes of enhanced water vapor transport,
are a significant source of precipitation for the west

coast of North America (Ralph et al. 2004; Dettinger
2013; Lavers et al. 2016), providing up to half of the
annual precipitation in California during a typical
cold season (Dettinger et al. 2011; Gershunov et al.
2017), recharging local reservoirs/water supply, and
reducing drought and wildfire risks. Model forecasts of
AR events are often hindered by a complex evolution
of synoptic and mesoscale meteorological features
(Kingsmill et al. 2006; Ralph et al. 2010; Cannon et
al. 2017, 2020) and inadequate observations for model
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assimilation, particularly over the Pacific Ocean
(Stone et al. 2020). Studies demonstrating the value
of both deterministic and ensemble modeling systems
for AR events have been conducted; however, there
have not been any published studies of probabilistic
forecasts of AR events over the West CONUS using
the High Resolution Rapid Refresh (HRRR) Ensemble
(HRRRE; Kalina et al. 2021). As part of the Advanced
Quantitative Precipitation Information (AQPI) project
(Cifelli et al. 2018, 2022), this work uses the HRRRE to
obtain probabilistic information on forecast uncertainty
associated with modeling five AR events, continuing the
work of English et al. (2021) that used the deterministic
HRRR.

The use of high-resolution “convection-permitting”
models has been found to improve forecasts of AR
events by representing meteorological features that
are not resolved by most global models. Martin et al.
(2018) compared global and high-resolution models
and found high-resolution models to have smaller
precipitation errors from ARs due to improved water
vapor representation. Huang et al. (2020) studied the
impacts of grid spacing in the Weather Research and
Forecasting (WRF; Skamarock et al. 2019) model on
accuracy of AR-related precipitation extremes and
found improvements as large as 40-60% in the fine
scale (3-km) version relative to coarse-scale (27-
km) simulations. Gowan et al. (2018) found several
high-resolution models—the High-Resolution Rapid
Refresh (HRRR; James et al. 2022; Dowell et al.
2022), the North American Model (NAM; Mathiesen
and Kleissl 2011) 3-km nest, and the National Center
for Atmospheric Research (NCAR) Ensemble—to be
more accurate than coarser operational models when
comparing Quantitative Precipitation Forecasts (QPF)
to Quantitative Precipitation Estimates (QPE) over the
western contiguous United States (CONUS) during the
cool season. Two intercomparison studies have found
the HRRR to perform the best for AR events among
high-resolution deterministic models (Gowan et al.,
2018; Dougherty et al. 2021). Additionally, English et
al. (2021) found HRRRv4 to demonstrate improved
forecasts of AR events relative to HRRRv3, but both
model versions exhibit QPF dry biases in the San
Francisco Bay Area and along the Pacific Coast and
QPF wet biases in the Sierra Nevada range.

In recent years, model ensembles have become
a useful tool to help quantify atmospheric forecast
uncertainty inherent with numerical weather prediction
(NWP) (Zhang and Pu 2010). Instead of making
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a single (deterministic) forecast of the most likely
future state of the atmosphere, a set (or ensemble)
of forecasts is produced, to give an indication of the
range of possible future states of the atmosphere. Often,
specific parameter(s) are perturbed, such as initial/
boundary conditions or physics, to produce the output
of the individual ensemble members. Many studies
have found model ensembles to be more accurate
than their deterministic counterparts in general (Atger
2001; Grimit and Mass, 2002; Rodwell 2006; Vokoun
and Hanel 2018; Zhao et al. 2020), and several studies
of model ensemble forecasts of ARs impinging on
the West CONUS have been conducted. Yuan et al.
(2005) evaluated probabilistic forecasts from the
National Centers for Environmental Prediction (NCEP)
Regional Spectral Model (RSM; Juang and Kanamitsu
1994; Juang et al. 1997) over the Southwest CONUS,
and found a general wet bias in the ensembles, and
concluded that the value of probabilistic forecasts
depends strongly on geography, threshold, and reference
dataset. Yuan et al. (2008) compared QPF from several
different time-lagged ensemble models to Stage IV
QPE in the Northern California cool season and found
model choice, model physics, and initial and boundary
conditions to all impact forecast uncertainty. Peel and
Wilson (2008) found the Canadian Ensemble Forecast
System (CEFS) to perform better in the cool season than
the warm season at higher thresholds, but that uncertainty
in QPE accuracy is much higher in the cool season due
to the impact of snow events. McColor and Stull (2008)
found that QPF accuracy during the British Columbia
cool season was improved in the Geophysical Disaster
Computational Fluid Dynamics Centre (GDCFDC)
real-time suite when including lower-resolution models
in the ensemble, compared to including only high-
resolution models. Brown et al. (2012) evaluated QPF
from NCEP’s Short-Range Ensemble Forecast (SREF;
Duetal. 2009) system over the Sierra Nevada region and
found its ensembles to overestimate light precipitation
and underestimate heavy precipitation versus Stage 1V,
and to be overconfident (underdispersive). Wick et al.
(2013) evaluated ARs impacting the West CONUS with
five operational ensemble forecast systems. Although
AR occurrences were forecasted with a 10-day lead
time, skill degraded with increasing lead time, with
an average error of more than 800 km at a 10-day lead
time, and a 1-2 deg southward position bias at a 7-day
lead time. Although the ensemble was able to forecast
timing, the location was more difficult for the model
to capture. Brown et al. (2014) evaluated precipitation,
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temperature, and streamflow from the Hydrologic
Ensemble Forecast Service (HEFS; Seo et al. 2010;
Demargne et al. 2010, 2014).) across a 20-year period
over the California-Nevada River Forecast Center
(CNRFC) and found reasonably accurate forecasts
during the cold season, but an underestimation during
the highest precipitation events. Lewis et al. (2017)
compared Global Ensemble Forecast System (GEFS;
Hamill et al. 2013) QPF to Snow Telemetry (SNOTEL)
stations over the West CONUS during the 2013-2015
cool seasons and found widespread dry biases, with low
ensemble reliability and insufficient spread.

Because the deterministic HRRR has demonstrated
accurate QPF relative to other high-resolution models,
and ensemble models are often more accurate than
their deterministic counterparts, our hypothesis is that
HRRRE probabilistic forecasts of AR events should
produce reliable QPF probability curves relative to
other ensemble models. Regardless, the contributions of
various types of perturbations on the mean and spread
of ensemble forecasts of AR events impacting the West
CONUS have not been systematically evaluated. The
HRRRE includes perturbations to initial and boundary
conditions (the most common types of perturbations),
and stochastic physics perturbations. Our hypothesis is
that initial and boundary conditions may be the primary
source of ensemble spread/forecast uncertainty, due
in part to fewer observations over the Pacific Ocean.
Conversely, stochastic physics perturbations, which
were identical to those in previous HRRRE experiments
(Kalina et al. 2021), may produce a relatively smaller
contribution to ensemble spread, due to the presence
of strong synoptic and orographic forcing for ascent
and the largely non-convective nature of AR events.
And finally, it is unclear how much ensemble spread
varies spatially over California during AR events.
Our hypothesis is that ensemble spread may be larger
along the Pacific Coast, where numerous complex
precipitation processes occur, and smaller over the
Sierra Nevada range, where much of the precipitation is
driven by large-scale orography.

In this paper we explore three questions: 1) How
accurate are HRRRE probabilistic forecasts of AR
events over the West CONUS? 2) What are the impacts
of stochastic physics perturbations on ensemble
accuracy and spread? 3) How does precipitation
bias and ensemble spread vary spatially? We will
answer these questions via the following analyses,
respectively: 1) Evaluate HRRRE Reliability plots and
Rank histograms, and compare ensemble mean spatial
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maps to the deterministic HRRR; 2) compare a set of
ensemble runs with and without stochastic physics and
quantify QPF differences between them; and 3) evaluate
spatial maps of ensemble spread.

2. Data and methods
a. The HRRR Ensemble

The HRRRE is a prototype ensemble modeling
system that uses a single physics package/single
dynamic core with stochastic perturbations to the
physical parameterizations and initial and boundary
condition perturbations to produce an ensemble
forecast (Kalina et al. 2021). The HRRRE contains
a 36-member ensemble analysis system and a
9-member forecast system producing 36-h forecasts,
although we produce 24-h forecasts in this study
because we focus our investigation on lead times up
to 24-h. The HRRRE encompasses an area slightly
larger than the CONUS with a convection-allowing
3-km horizontal grid spacing. The HRRRE uses the
Advanced Research version of the Weather Research
and Forecasting (WRF-ARW) dynamic core and the
Rapid Refresh/ High Resolution Rapid Refresh (RAP/
HRRR) physics suite (Benjamin et al. 2016; Olson et
al. 2019; James et al. 2022; Dowell et al. 2022). The
HRRRE includes four types of perturbations: initial
condition (IC) perturbations, boundary condition (BC)
perturbations, stochastic parameter perturbations (SPP)
(Palmer 2001), and stochastic perturbations of physics
tendencies (SPPT) (Buizza et al. 1999). The SPP scheme
in HRRRE consists of a random pattern generator that
creates a vertically uniform perturbation field with
prescribed spatiotemporal correlations, and is applied
to numerous parameters in numerous physics schemes
(Kalina et al. 2021). The SPPT scheme perturbs the total
physics tendencies for temperature, humidity, and wind.
Because the HRRRE uses a single dynamic core and
a single physics suite, ensemble spread may be more
limited than multi-dynamic or multi-physics ensemble
systems, but this HRRRE design enables statistically
consistent ensemble distribution (Bowler et al. 2009;
Berner et al. 2009; Sanchez et al. 2015). More details on
the HRRRE configuration, including the complete list
of SPP fields and the magnitudes of their perturbations,
are provided in Kalina et al. 2021. In this study, we
use a temporal scale of 72 h instead of 6 h for SPP and
SPPT perturbations, based on more recent studies at
the National Oceanic and Atmospheric Administration
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Table 1. Time Periods of AR events studied. Times
listed below are valid times; hence model initialization
times will differ by each lead time. For all lead time
evaluations, model cycles are initialized at 00 and 12
UTC each day; hence, five to six initialization times are
utilized for each AR event, depending on lead time.

Valid Time
AR Event (2019) Period Averaged
54 Feb 12 UTC 02-Feb to

12 UTC 04-Feb

06 UTC 13-Feb to

13-15 Feb 06 UTC 15-Feb

s |uea
o[
5.7 Mar 06 UTC 05-Mar to

00 UTC 07-Mar

(NOAA) Global Systems Lab (GSL) that resulted in
improved ensemble spread and reduced error of near-
surface meteorological fields (Isidora Jankov, personal
communication). The HRRRE was run in “real-time” at
NOAA GSL from 2017 through 2021, and evaluations
of its configuration and verification are informing the
next-generation ensemble model development, which
will be based on the new Rapid Refresh Forecast
System (RRFS) instead of the HRRR.

b. Experimental design

We set up and run two continuous HRRRE
retrospective simulations from 1 February 2019
through 10 March 2019: a HRRRE control with IC,
BC, SPP, and SPPT ensemble perturbations (using the
same configuration as the “real-time” HRRRE run at
NOAA GSL), and a HRRRE experiment with IC and
BC perturbations only. This time period encompasses
five AR events that occurred in California (Table 1).
Comparing the two simulations can provide insight
regarding how much SPP and SPPT perturbations
impact forecasts of AR events over the West CONUS.
The HRRRE is initialized twice a day at 00 and 12
UTC using soil state from a companion deterministic
HRRRv4 retrospective simulation, and 24-h forecasts
are produced. More details on the deterministic
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Figure 1. Spatial maps of average 6-h accumulation
(mm), averaged across the 36-h or 48-h peak
precipitation time periods for all five AR events (Table
1). a) Stage IV. b) HRRRE control (IC/BC/SPP/SPPT)
bias (6-h lead time). ¢) Deterministic HRRRv4 (6-h
lead time) bias. HRRRE bias is calculated as HRRRE
ensemble average minus Stage IV; HRRRv4 bias is
calculated as HRRRv4 minus - Stage 1V; blue-green
colors are a model wet bias and brown colors are a dry
bias. Comparisons are “matching”; hence, the three
datasets include initialization times 00 and 12 UTC
(valid times 06 and 18 UTC) each day. Click image for
an external version, this applies to all figures hereafter.

HRRRv4 retrospective simulation and the five AR
events are provided in English et al. (2021).

The choice of evaluation metrics and corresponding
spatiotemporal domains to average is complex.
Although evaluating over smaller domains or time
periods or across individual AR events may facilitate
identifying differences between the control and the
experiment, differences are often not statistically
significant when looking at individual weather events
or specific geographic locations. Indeed, in English et
al. (2021), we found that although several AR events
had some interesting unique characteristics, differences
between two model runs were not statistically significant
when evaluating any individual event, and we needed to
average across all five AR events to observe significant
differences between two model runs. Hence, we follow
a similar approach for this study: We evaluate QPF
across the time period in which the most significant
precipitation occurred for each AR event (generally 36-h
or 48-h in length per event; Table 1) over our designated
AQPI domain (33.38-41.48N, 118.28-123.88W; Fig.
1), and average across all five AR events. We remove
a small region near a recently identified faulty rain
gauge, as discussed further in the next paragraph. We
evaluate ensemble forecast performance via reliability
plots (Wilks 1995), rank histograms (Anderson 1996;
Hamill and Colucci 1997; Talagrand et al. 1997; Wilks
2019), frequency bias plots, fractions skill score (FSS)
(Roberts and Lean 2008), and precipitation bias. Model
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QPF is compared to Stage IV QPE. Stage IV is an
hourly/6-hourly product produced by the twelve river
forecast centers (Lin and Mitchell 2005; Nelson et al.
2016). Over the AQPI evaluation domain, Stage IV is
produced by the CNRFC, and is based solely on gauges
and climatology (i.e., without using radar-derived
precipitation estimates, due to radar gaps/blockages
across many parts of California). Though Stage IV
has some known weaknesses, often associated with
mountainous regions and frozen precipitation (Nelson et
al. 2016; Herman and Schumacher 2018), it is generally
regarded as a high-quality, gridded multisensory QPE
product, and is often chosen as the reference dataset
when evaluating other QPE products (Wu et al. 2012;
Gourley et al. 2010; Lin and Hou 2012). However, all
QPE products including Stage IV are known to have
uncertainties in parts of the CNRFC region, particularly
in mountainous terrain and at temperatures below
freezing (Peel and Wilson 2008; Smalley et al. 2014;
Lundquist et al. 2019; Bytheway et al. 2020; English
et al. 2021). To address these uncertainties, we also
average ensemble performance over two different
altitude domains: the AQPI domain at elevations below
1500 m (eliminating most of the domain that involves
mountainous terrain and temperatures below freezing,
where Stage IV is least reliable), and the AQPI domain
at elevations above 1500 m. Additionally, we remove a
small region (37.9-38.1 Nand 121.4-121.6 W) from our
computations for Reliability plots and Rank histograms
to account for a faulty gauge recently identified in
the Russian River basin. This gauge (Venado) was
improperly sited and producing accumulations that
were much too high compared to a co-located weighing
type gauge (Andrew Martin, personal communication).

3. Analysis and discussion
a. Ensemble mean spatial precipitation

While the spatial distribution of precipitation varies
considerably across the five AR events (see English et
al. 2021), mean 6-h precipitation is generally highest
along the Pacific Coast and the Sierra Nevada range,
and lowest in the Central Valley, (Fig. 1a). Because
of orographic enhancement, the heaviest precipitation
occurs in the mountainous regions, particularly the
coastal mountains north of the San Francisco Bay Area
and the Sierra Nevada range north of Lake Tahoe,
where mean precipitation rates reach roughly 20 mm
(6 h)!' (160 mm per 48-h AR event). HRRRE control
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mean precipitation compares reasonably well to Stage
IV (generally within 3 mm (6 h) '), but is drier along
much of the Pacific Coast, especially in the mountains
north of the San Francisco Bay Area (however, the
recently identified faulty Venado gauge is in this region
and likely to have been included in the production of
the Stage IV QPE), and wetter than Stage IV to the east,
particularly in the Sierra Nevada range (Fig. 1b).

The HRRRE control mean has a somewhat similar
bias map to the deterministic HRRRv4 (Fig. 1¢), which
shares the same physics as the HRRRE configuration
studied here, although the HRRRE control dry bias is
reduced, particularly in the San Francisco Bay Area and
along the Pacific Coast. The deterministic HRRRv4 dry
biases versus Stage IV in the San Francisco Bay Area
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Figure 2. Reliability plots of 6-h accumulated
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) and HRRRE experiment (IC/BC only) at two
thresholds (2.5 mm and 25 mm) and four lead times
(6-h, 12-h, 18-h, 24-h) compared to Stage IV. Data
include the 36-h to 48-h time period in which the most
significant precipitation for each AR event (Table 1)
across the designated AQPI domain (33.38-41.48N,
118.28-123.88W), with a small domain surrounding
the faulty Venado gauge removed (37.9-38.1IN, 121.4—
121.6W). The “no skill” lines indicate where reliability
and resolution are equal and therefore the forecast has
zero skill relative to a reference forecast (i.e., random
chance). Comparisons are “matching”; hence, the
datasets include any valid times corresponding to the
respective lead times from the 00 and 12 UTC HRRRE
initialization times each day.
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and along the Pacific Coast are possibly related to errors
in the modeled temperature profile and/or the vertical
distribution of water vapor, while integrated water vapor
(IWV), wind speed, and wind direction all compared
well to available observations at nearby Atmospheric
River Observatories (English et al. 2021), and were
found in studies with the deterministic HRRRv3 as well
(Darby et al. 2019; Dougherty et al. 2021). Dougherty
et al. (2021) suggested that HRRR wind direction may
be responsible for the HRRR QPF dry bias along the
Pacific Coast, as 12-h forecasts from the HRRRv3
had some biases in wind direction compared to nearby
ARO stations during the 2018/2019 cool season. The
HRRRv4 wet biases versus Stage IV in the Sierra
Nevada range are at least partly attributed to errors
and uncertainties with detecting frozen precipitation in
QPE products such as Stage IV; when constrained to
liquid precipitation only, HRRRv4 and Stage IV have
excellent agreement (English et. al 2021). The HRRRE
experiment mean bias map looks visually similar to the
HRRRE control (not shown), and differences between
the control and experiment are discussed in more depth
in the following sections.

b. Reliability plots

The HRRRE is compared to Stage IV QPE via
reliability plots of 6-h accumulation at two precipitation
thresholds (Fig. 2). A 25-km Gaussian smoother is
applied to the probability of exceedance forecasts
to reduce the impact of small location errors. We
chose 25-km to be consistent with the operational
High Resolution Ensemble Forecast system version
2 (HREFv2). A perfect ensemble would match the
observed frequency at each probability, following the
black diagonal line. At a 2.5-mm threshold (Fig. 2a),
HRRRE control forecast probabilities generally agree
well with Stage IV frequency, particularly at 18-h and
24-h lead times, where they differ by <5%. At shorter
lead times, HRRRE control forecast probabilities are
slightly lower than Stage IV frequencies, particularly
at probabilities >50%, suggesting the model slightly
underpredicts the probability of precipitation exceeding
the given thresholds. At a 25-mm threshold, HRRRE
control 6-h forecasts agree well with Stage IV frequency
at probabilities above 50%, but overpredict precipitation
frequency at lower probabilities. At lead times >6 h,
the HRRRE control more consistently overpredicts the
probability of precipitation, and this overprediction
generally increases with longer lead times, except for
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Figure 3. Same as Figure 2, but including only grid
boxes at <1500 m elevation in the AQPI domain.
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Figure 4. Same as Figure 2, but including only grid
boxes at >1500 m elevation in the AQPI domain.

forecast probability

probabilities from about 55 to 80% where 18-h lead
times overpredict more than 24-h lead times.
Comparing the HRRRE control to the HRRRE
experiment can help answer the question: What are the
impacts of SPP and SPPT perturbations on ensemble
accuracy and spread? The difference in performance
metrics between the HRRRE control and experiment
provide an understanding of the contributions of SPP
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and SPPT to ensemble QPF mean and/or spread, and
therefore the importance of these perturbations on
model uncertainty and forecast probabilities for AR
events impacting the West CONUS. Reliability plots
for the HRRRE experiment (Figs. 2b, 2d) generally
differ from the HRRRE control by <5% at a given
observed frequency (Figs 2a, 2¢), suggesting that SPP
and SPPT perturbations have small contributions to the
probability distributions.

Next, we produce reliability plots for the low
(<1500 m) and high (>1500 m) altitude domains (Figs.
3 and 4, respectively). In the low altitude (<1500 m)
domain at a 2.5 mm threshold, HRRRE control forecast
probabilities increase relative to Stage IV frequency
when including only data below 1500 m than when
evaluating over the full AQPI domain (Fig. 3a versus
Fig. 2a, respectively). At forecast probabilities >50%,
this translates to improved ensemble performance
at shorter (6-h and 12-h) lead times, and degraded
performance at longer (18-h and 24-h) lead times. At
forecast probabilities <50%, this translates to a slight
overprediction of precipitation probability relative to
Stage IV. In the low altitude (<1500 m) domain at a 25
mm threshold, the HRRRE overforecasts precipitation
probability at lead times 12 h and longer, whereas
HRRRE underpredicts precipitation probability at
shorter (6-h) lead times (Fig. 3¢). Forecast probabilities
in the high altitude (>1500 m) domain are generally
<5% different than probabilities over the full AQPI
domain at both 2.5 and 25 mm thresholds, except for
shorter (6-h) lead times at a 25 mm threshold, where
HRRRE control forecast probabilities increase relative
to Stage IV in the high altitude (>1500 m) domain (Fig.
4c versus Fig. 2¢, respectively). As with the evaluation
over the full AQPI domain, reliability plots for the
HRRRE experiment are similar to the HRRRE control
(generally differ by <5%) over the low altitude (Fig. 3)
and high altitude (Fig. 4) domains as well.

c.  Rank histograms

Rank histograms are provided at two lead times
(6-h and 24-h) to show the relative ranking of the
observed precipitation among the HRRRE members
(Fig. 5). A perfect ensemble would have the same
relative frequency across all ranks, meaning the
observation is indistinguishable among the model
ensemble members, suggesting a consistent degree of
ensemble dispersion. At 6-h lead times, Stage IV falls
outside the minimum and maximum ensemble members
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HRRRE control (IC/BC/SPP/SPPT)

HRRRE experiment (IC/BC only)

6-h lead time

0.
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24-h lead time
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12 3 45 6 7 8 9 10 123 456 7 8 910

Figure 5. Rank Histograms of 6-h accumulated
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) and HRRRE experiment (IC/BC only) at two
lead times (6-h and 24-h). The histograms report the
frequency of occurrence of Stage IV relative to the
nine HRRRE members. The dashed line represents
a flat histogram, where Stage IV has a frequency of
occurrence that is statistically indistinguishable among
the nine HRRRE members (hence, a total of 10 bins)
(Wilks 2019).

slightly more often than expected (about 13—14% rather
than 10% occurrence), suggesting HRRRE is slightly
underdispersive (Fig. 5a). The underdispersiveness
is slightly larger at longer (24-h) lead times (Fig. 5c¢),
suggesting the ensemble spread does not sufficiently
capture forecast uncertainty at longer lead times. When
evaluating longer (24-h) lead times as a function of
elevation, the HRRRE is less underdispersive over the
low elevation (<1500 m) domain (Figs. 6a), and more
underdispersive over the high elevation (>1500 m)
domain (Figs. 6¢). However, because of uncertainty
with Stage IV at high elevation, it is unclear whether
the HRRRE is not accurately capturing the precipitation
spread, or if there are errors with Stage IV. Indeed,
the small-scale maxima and minima in the HRRRE
mean precipitation fields are physically consistent
with orographic processes, and may not be adequately
included in the Stage IV data. Regardless, the HRRRE
was found to be underdispersive in other applications
as well, such as warm-season convective events (Grim
et al. 2022). This underdispersiveness is a well-known
deficiency with model ensembles in general (Berner et
al. 2017), and is consistently noted in other ensemble
evaluations of AR events impacting the West CONUS
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Figure 6. Rank Histograms of 6-h accumulated
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) across two elevation domains at 24-h lead time.
The histograms report the frequency of occurrence
of Stage IV relative to the nine HRRRE ensemble
members. The dashed line represents a flat histogram,
where Stage IV has a frequency of occurrence that is
statistically indistinguishable among the nine HRRRE
members (hence, a total of 10 bins) (Wilks 2019).

(McCollor and Stull 2008; Yuan et al. 2008; Peel and
Wilson 2008; Lewis et al. 2017).

At 6-h lead times, rank histograms are similar
between the HRRRE control (Fig. 5a) and HRRRE
experiment (Fig. 5b); the frequency distributions differ
by generally <2% for each ensemble member. At 24-h
lead times, the HRRRE experiment (Fig. 5d) is slightly
more underdispersive than the HRRRE control (Fig.
5c¢). This is true both at low altitudes (Fig. 6b versus
Fig. 6a, respectively) and high altitudes (Fig. 6d versus
Fig. 6¢c, respectively). This suggests that at longer (24-h)
lead times, the inclusion of SPP and SPPT perturbations
help increase ensemble spread, and therefore, provide
a more accurate representation of forecast uncertainty.

d. Frequency bias and fractions skill scores (FSS)

HRRRE frequency bias plots show the HRRRE
control to have an excellent comparison to Stage IV at
thresholds less than 1.3 mm at all lead times (frequency
bias is between 0.98 and 1.05) (Fig. 7a). At larger
thresholds, the HRRRE overforecasts the frequency
of precipitation (frequency bias greater than one).
Frequency bias increases at longer lead times at the
larger thresholds. These results differ from Brown et al.
(2012), where they found the SREF to underestimate
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Figure 7. Frequency Bias and Fractions Skill Score of
6-h accumulated precipitation for all of the ensemble
members in the HRRRE control (IC/BC/SPP/SPPT)
and HRRRE experiment (IC/BC only) at a range of
thresholds and four lead times (6-h, 12-h, 18-h, 24-h)
compared to Stage IV. Data include the 36-h to 48-h
time period in which the most significant precipitation
for each AR event (Table 1) across the designated
AQPI domain (33.38-41.48N, 118.28-123.88W), with
a small domain surrounding the faulty Venado gauge
removed (37.9-38.1N, 121.4-121.6W). Comparisons
are “matching”; hence, the datasets include any valid
times corresponding to the respective lead times from
the 00 and 12 UTC HRRRE initialization times each
day.

heavy precipitation. However, there are many
differences between the two ensemble systems; the
HRRRE leverages an hourly cycled data assimilation
ensemble for model spin up, and is run at convection-
permitting grid spacing and generates a more complex
and amplified 3-D vertical velocity field, particularly
when representing orographic forcing and convective
updrafts. The FSS is highest (approximately 0.8) at
smallest thresholds, and decreases to less than0.2 at the
largest thresholds (Fig. 7c). In contrast to frequency
bias, FSS does not change much at longer lead times
(generally within 10% at a given threshold).

Frequency bias differs by less than 3% between the
HRRRE control (Fig. 7a) and HRRRE experiment at
thresholds less than about 30 mm (Fig. 7b). At thresholds
greater than about 30 mm, the HRRRE experiment has
a larger frequency bias relative to the control at lead
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times 12 h and longer. FSS as a function of threshold
are also similar between the HRRRE control (Fig. 7¢)
and the HRRRE experiment (Fig. 7d) at all lead times,
generally differing by less than 3%.

Next, we produce frequency bias plots for the
low (less than 1500 m) and high (greater than 1500
m) altitude domains (Fig. 8). Frequency bias is larger
over the high-altitude domain, particularly at shorter
(6-h) lead times at thresholds greater than 15 mm. In
particular, for 6-h lead times at a threshold of 25.4
mm, frequency bias is 1.2 over the low altitude domain
(Fig. 8a) but is 2.0 over the high-altitude domain (Fig.
8c) (67% higher). As with the evaluation over the
full domain, frequency bias differs by less than3%
between the HRRRE control and HRRRE experiment
at thresholds less than about 30 mm over both the low
altitude domain (Fig. 8b versus Fig. 8a, respectively)
and the high-altitude domain (Fig. 8d versus Fig. 8c,
respectively).

Figure 9. Spatial maps of 6-h accumulation (mm)
ensemble mean and standard deviation, averaged across
the 36-h or 48-h peak precipitation time periods for all
five AR events (Table 1) for the HRRRE control (IC/BC/
SPP/SPPT) and HRRRE Experiment (IC/BC only) (6-h
lead times). (a,b) ensemble mean (mm). (c,d) ensemble
standard deviation (mm). (e,f) normalized ensemble
standard deviation (standard deviation divided by
ensemble mean). Comparisons are “matching”; hence,
the datasets include HRRRE initialization times 00 and
12 UTC (Stage IV valid times 06 and 18 UTC) each

day.
e. Spatial variation of ensemble spread

Spatial maps of 6-h accumulated ensemble mean
and standard deviation for the HRRRE control (6-h lead
times) illustrate the spatial distribution of ensemble
spread (Fig. 9). Ensemble standard deviation is larger
along the Pacific Coast and in the Sierra Nevada range
(Fig. 9c). However, the standard deviation is strongly
related to the mean value, which varies significantly
and also peaks along the Pacific Coast and in the
Sierra Nevada range (Fig. 9a). When calculating the
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coefficient of variation (dividing standard deviation
by the mean precipitation value), ensemble spread per
unit accumulated precipitation is largest in the Central
Valley, and lowest in the Sierra Nevada range (Fig. 9¢).
The larger normalized ensemble spread in the Central
Valley is related to the small values of accumulated
precipitation (generally <I mm per 6 h) in the
denominator. The lower normalized ensemble spread
in the Sierra Nevada range suggests that the ensemble
perturbations (IC, BC, SPP, and SPPT) occurring in this
HRRRE model configuration do not affect precipitation
processes in the Sierra Nevada range as much as
in other geographic regions. This suggests that the
processes responsible for precipitation over the Sierra
Nevada range (orographic forcing and microphysical
processes) are not being perturbed as much. However,
some of the regional differences in coefficient of
variation are due to biases in mean precipitation. Over
the Sierra Nevada range, the HRRRE has a mean wet
bias of roughly 20% (Fig. 1b), which contributes to a
20% reduction in coefficient of variation. Therefore,
adjusting to a mean bias of zero would increase the
coefficient of variation over the Sierra Nevada range by
about 20% (from roughly 0.4 to about 0.6). Likewise,
along the Pacific coast, the HRRRE has a mean dry
bias of about 10%, which contributes to a 10% increase
in coefficient of variation. Adjusting to a mean bias of
zero would decrease the coefficient of variation over
the Pacific coast by about 10% (from roughly 0.9 to
0.8). This reduces the regional differences, but the
ensemble spread over the Sierra Nevada range remains
generally less than other geographic regions, with the
possible exception of the mountains north of the San
Francisco Bay Area (recall the recently identified faulty
Venado gauge in this region). There is some uncertainty
in this assessment as Stage IV is less reliable over the
Sierra Nevada range. Conversely, the relatively higher
ensemble spread over the Coastal Range suggests that
the ensemble perturbations do have a significant impact
on precipitation in this region. Spatial maps of the
HRRRE control ensemble coefficient of variation (Fig.
9¢) appear visually similar to the HRRRE experiment
(Fig. 9f), suggesting that SPP and SPPT perturbations
do not meaningfully impact the spatial biases in any
particular location.

4. Conclusions

The results presented here are a first evaluation of
precipitation forecasts of AR events from the HRRRE.
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Probabilistic forecasts from the HRRRE for five
AR events that impacted California in February and
March 2019 were investigated to answer three science
questions:

1. How accurate are HRRRE probabilistic
forecasts of AR events over the West CONUS?
The ensemble metrics presented here
(reliability plots and rank histograms) suggest
that the forecast probability from the HRRRE
with its current real-time perturbations (IC/
BC/SPP/SPPT) provide a reasonably accurate
representation of forecast uncertainty of AR
events impacting central California at 6-h
to 24-h lead times. Reliability plots (Fig. 2)
suggest that the ensemble members of the
HRRRE control have a reliable representation
of observed frequency across all lead times
studied (6-h to 24-h) at the 2.5-mm threshold.
The HRRRE overpredicts the frequency
of precipitation occurrence at the 25-mm
threshold. Rank histograms suggest the HRRRE
spread to be slightly underdispersive, which
is a common trait of many model ensemble
systems. The HRRRE is less underdispersive
at elevations below 1500 m, where Stage IV is
known to be most reliable, with higher density
of precipitation gauges, less climatological
adjustment, and less frozen precipitation.

2. What are the impacts of stochastic physics
perturbations on ensemble accuracy and
spread? The differences between the HRRRE
control and HRRRE experiment are small by
most metrics investigated here (reliability plots,
rank histograms, frequency bias, FSS, and
spatial maps of ensemble mean precipitation
and standard deviation). This suggests that
SPP and SPPT perturbations make relatively
small contributions to ensemble accuracy of
precipitation forecasts from AR events, which
is supported by spatial maps of ensemble
mean precipitation (Fig. 9) that show small
differences between the HRRRE control and
HRRRE experiment. One exception is that
rank histograms of the HRRRE experiment are
slightly less underdispersive at 24-h lead time,
suggesting that SPP and SPPT perturbations
contribute meaningfully to an increase
of ensemble spread at longer lead times.
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Overall, IC/BC perturbations make a much
larger contribution to ensemble performance/
spread than SPP and SPPT perturbations.

3. How does precipitation bias and ensemble
spread vary spatially? Spatial maps of average
precipitation (Fig. 1) suggest the HRRRE
mean reasonably captures the observed spatial
distribution of precipitation, but is wetter than
Stage IV over the Sierra Nevada range, and drier
than Stage IV along the coastal range north of
the San Francisco Bay Area (however, Stage
IV may not be reliable in this region due to the
recently identified faulty Venado gauge). Spatial
maps of ensemble coefficient of variation show
that ensemble spread is largest over the Central
Valley, and smallest over the Sierra Nevada
range, although a HRRRE precipitation wet
bias contributes to part of the reduction over
the Sierra Nevada range. These differences in
coefficient of variation suggest there is greater
uncertainty in forecasts over the Central Valley,
and less uncertainty over the Sierra Nevada
range. This suggests that the HRRRE ensemble
perturbations (IC/BC/SPP/SPPT) have a small
effect on precipitation forecast uncertainty
over the Sierra Nevada range, and that other
model parameters/uncertainties are likely at
play. Rank histograms show the HRRRE to be
more underdispersive above 1500 m elevation,
suggesting the ensemble isn’t capturing
sufficient forecast uncertainty, although Stage
IV is less reliable at higher elevations.

These results demonstrate the value and accuracy of
probabilistic forecasts of precipitation from the single
dynamic core/single physics suite used in HRRRE
during AR events impacting the West CONUS, which
provides useful guidance towards developing the next-
generation RRFS deterministic model and ensembles
based on it. Future work exploring perturbations to other
parameters that might be relevant to the meteorological
processes present during AR events would be useful. For
example, Jeworrek et al. (2021) investigated the impacts
of changing physics, microphysics, and grid spacing
specifications in the WRF model (on which the HRRR
is based) for a year of precipitation forecasts in British
Columbia and concluded that the choice of cumulus and
microphysics parameterizations had the largest impact
on precipitation forecasts. Further work to improve the
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reliability of QPE products at high elevations when
frozen precipitation is present, such as a probabilistic
QPE product (Bytheway et al. 2022) would be useful to
better quantify observed precipitation as well as more
confidently evaluate model QPF accuracy.
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