
40

English, J. M., D. D. Turner, D. Dowell, T. I. Alcott, R. Cifelli, and J. L. Bytheway, 2024: Probabilistic Forecasts  
of Atmospheric River events using the HRRR Ensemble. J. Operational Meteor., 12 (4), 40-53, doi: https://doi.org/10.15191/ 
nwajom.2024.1204.

Corresponding author address: Jason M. English, NOAA Global Systems Laboratory, 325 Broadway, Boulder, CO 80305
E-mail: jason.english@noaa.gov

Probabilistic Forecasts of Atmospheric River events 
using the HRRR Ensemble

JASON M. ENGLISH
NOAA Global Systems Laboratory, 

Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO

DAVID D. TURNER, DAVID C. DOWELL, AND TREVOR I. ALCOTT
NOAA Global Systems Laboratory, Boulder, CO

ROBERT CIFELLI AND JANICE L. BYTHEWAY
NOAA Physical Sciences Laboratory, Boulder, CO

(Manuscript received 9 February 2023; review completed 19 July 2023)

ABSTRACT

 The nine-member High-Resolution Rapid Refresh Ensemble (HRRRE) is evaluated for its ability to 
forecast five Atmospheric River (AR) events that impacted California in February–March 2019. Two sets of 
retrospective HRRRE simulations are conducted, a control with the standard set of perturbations (initial 
and boundary conditions, stochastic parameters, and physics tendency), and an experiment with initial 
and boundary perturbations only. Reliability plots suggest the HRRRE control represents the observed 
Stage IV precipitation frequency well at 6-h to 24-h lead times, and rank histograms suggest the ensemble is 
slightly underdispersive. The HRRRE overpredicts precipitation frequency at the higher (25 mm) threshold. 
These results suggest the HRRRE is a useful tool to quantify probabilistic forecasts of AR events in this 
region. Removing stochastic physics perturbations did not substantially impact probabilistic forecasts, 
suggesting most of the ensemble spread is from initial and boundary condition perturbations. Spatially, 
ensemble precipitation coefficient of variance is lower (less forecast uncertainty) over the Sierra Nevada 
range than other regions, suggesting that these ensemble perturbations have a smaller impact on 
precipitation processes occurring over the Sierra Nevada range. More work should be conducted to 
understand the impacts of other model perturbations, such as microphysics, on ensemble performance, and 
to improve Stage IV accuracy with frozen precipitation in mountainous regions. 

1. Introduction

Accurate forecasts of the timing, intensity, and
location of precipitation and winds can improve 
preparation for and reduce the negative impacts from 
Atmospheric River (AR) events, such as flooding, 
mudslides, and strong winds (Corringham et al. 2019). 
ARs, long (2000 km or greater) and narrow (300–500 
km wide) plumes of enhanced water vapor transport, 
are a significant source of precipitation for the west 

coast of North America (Ralph et al. 2004; Dettinger 
2013; Lavers et al. 2016), providing up to half of the 
annual precipitation in California during a typical 
cold season (Dettinger et al. 2011; Gershunov et al. 
2017), recharging local reservoirs/water supply, and 
reducing drought and wildfire risks. Model forecasts of 
AR events are often hindered by a complex evolution 
of synoptic and mesoscale meteorological features 
(Kingsmill et al. 2006; Ralph et al. 2010; Cannon et 
al. 2017, 2020) and inadequate observations for model 
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assimilation, particularly over the Pacific Ocean 
(Stone et al. 2020). Studies demonstrating the value 
of both deterministic and ensemble modeling systems 
for AR events have been conducted; however, there 
have not been any published studies of probabilistic 
forecasts of AR events over the West CONUS using 
the High Resolution Rapid Refresh (HRRR) Ensemble 
(HRRRE; Kalina et al. 2021). As part of the Advanced 
Quantitative Precipitation Information (AQPI) project 
(Cifelli et al. 2018, 2022), this work uses the HRRRE to 
obtain probabilistic information on forecast uncertainty 
associated with modeling five AR events, continuing the 
work of English et al. (2021) that used the deterministic 
HRRR.
	 The use of high-resolution “convection-permitting” 
models has been found to improve forecasts of AR 
events by representing meteorological features that 
are not resolved by most global models. Martin et al. 
(2018) compared global and high-resolution models 
and found high-resolution models to have smaller 
precipitation errors from ARs due to improved water 
vapor representation. Huang et al. (2020) studied the 
impacts of grid spacing in the Weather Research and 
Forecasting (WRF; Skamarock et al. 2019) model on 
accuracy of AR-related precipitation extremes and 
found improvements as large as 40–60% in the fine 
scale (3-km) version relative to coarse-scale (27-
km) simulations. Gowan et al. (2018) found several 
high-resolution models—the High-Resolution Rapid 
Refresh (HRRR; James et al. 2022; Dowell et al. 
2022), the North American Model (NAM; Mathiesen 
and Kleissl 2011) 3-km nest, and the National Center 
for Atmospheric Research (NCAR) Ensemble—to be 
more accurate than coarser operational models when 
comparing Quantitative Precipitation Forecasts (QPF) 
to Quantitative Precipitation Estimates (QPE) over the 
western contiguous United States (CONUS) during the 
cool season. Two intercomparison studies have found 
the HRRR to perform the best for AR events among 
high-resolution deterministic models (Gowan et al., 
2018; Dougherty et al. 2021). Additionally, English et 
al. (2021) found HRRRv4 to demonstrate improved 
forecasts of AR events relative to HRRRv3, but both 
model versions exhibit QPF dry biases in the San 
Francisco Bay Area and along the Pacific Coast and 
QPF wet biases in the Sierra Nevada range. 
	 In recent years, model ensembles have become 
a useful tool to help quantify atmospheric forecast 
uncertainty inherent with numerical weather prediction 
(NWP) (Zhang and Pu 2010). Instead of making 

a single (deterministic) forecast of the most likely 
future state of the atmosphere, a set (or ensemble) 
of forecasts is produced, to give an indication of the 
range of possible future states of the atmosphere. Often, 
specific parameter(s) are perturbed, such as initial/
boundary conditions or physics, to produce the output 
of the individual ensemble members. Many studies 
have found model ensembles to be more accurate 
than their deterministic counterparts in general (Atger 
2001; Grimit and Mass, 2002; Rodwell 2006; Vokoun 
and Hanel 2018; Zhao et al. 2020), and several studies 
of model ensemble forecasts of ARs impinging on 
the West CONUS have been conducted. Yuan et al. 
(2005) evaluated probabilistic forecasts from the 
National Centers for Environmental Prediction (NCEP) 
Regional Spectral Model (RSM; Juang and Kanamitsu 
1994; Juang et al. 1997) over the Southwest CONUS, 
and found a general wet bias in the ensembles, and 
concluded that the value of probabilistic forecasts 
depends strongly on geography, threshold, and reference 
dataset. Yuan et al. (2008) compared QPF from several 
different time-lagged ensemble models to Stage IV 
QPE in the Northern California cool season and found 
model choice, model physics, and initial and boundary 
conditions to all impact forecast uncertainty. Peel and 
Wilson (2008) found the Canadian Ensemble Forecast 
System (CEFS) to perform better in the cool season than 
the warm season at higher thresholds, but that uncertainty 
in QPE accuracy is much higher in the cool season due 
to the impact of snow events. McColor and Stull (2008) 
found that QPF accuracy during the British Columbia 
cool season was improved in the Geophysical Disaster 
Computational Fluid Dynamics Centre (GDCFDC) 
real-time suite when including lower-resolution models 
in the ensemble, compared to including only high-
resolution models. Brown et al. (2012) evaluated QPF 
from NCEP’s Short-Range Ensemble Forecast (SREF; 
Du et al. 2009) system over the Sierra Nevada region and 
found its ensembles to overestimate light precipitation 
and underestimate heavy precipitation versus Stage IV, 
and to be overconfident (underdispersive). Wick et al. 
(2013) evaluated ARs impacting the West CONUS with 
five operational ensemble forecast systems. Although 
AR occurrences were forecasted with a 10-day lead 
time, skill degraded with increasing lead time, with 
an average error of more than 800 km at a 10-day lead 
time, and a 1–2 deg southward position bias at a 7-day 
lead time. Although the ensemble was able to forecast 
timing, the location was more difficult for the model 
to capture. Brown et al. (2014) evaluated precipitation, 
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temperature, and streamflow from the Hydrologic 
Ensemble Forecast Service (HEFS; Seo et al. 2010; 
Demargne et al. 2010, 2014).) across a 20-year period 
over the California-Nevada River Forecast Center 
(CNRFC) and found reasonably accurate forecasts 
during the cold season, but an underestimation during 
the highest precipitation events. Lewis et al. (2017) 
compared Global Ensemble Forecast System (GEFS; 
Hamill et al. 2013) QPF to Snow Telemetry (SNOTEL) 
stations over the West CONUS during the 2013–2015 
cool seasons and found widespread dry biases, with low 
ensemble reliability and insufficient spread. 
	 Because the deterministic HRRR has demonstrated 
accurate QPF relative to other high-resolution models, 
and ensemble models are often more accurate than 
their deterministic counterparts, our hypothesis is that 
HRRRE probabilistic forecasts of AR events should 
produce reliable QPF probability curves relative to 
other ensemble models. Regardless, the contributions of 
various types of perturbations on the mean and spread 
of ensemble forecasts of AR events impacting the West 
CONUS have not been systematically evaluated. The 
HRRRE includes perturbations to initial and boundary 
conditions (the most common types of perturbations), 
and stochastic physics perturbations. Our hypothesis is 
that initial and boundary conditions may be the primary 
source of ensemble spread/forecast uncertainty, due 
in part to fewer observations over the Pacific Ocean. 
Conversely, stochastic physics perturbations, which 
were identical to those in previous HRRRE experiments 
(Kalina et al. 2021), may produce a relatively smaller 
contribution to ensemble spread, due to the presence 
of strong synoptic and orographic forcing for ascent 
and the largely non-convective nature of AR events. 
And finally, it is unclear how much ensemble spread 
varies spatially over California during AR events. 
Our hypothesis is that ensemble spread may be larger 
along the Pacific Coast, where numerous complex 
precipitation processes occur, and smaller over the 
Sierra Nevada range, where much of the precipitation is 
driven by large-scale orography. 
	 In this paper we explore three questions: 1) How 
accurate are HRRRE probabilistic forecasts of AR 
events over the West CONUS? 2) What are the impacts 
of stochastic physics perturbations on ensemble 
accuracy and spread?  3) How does precipitation 
bias and ensemble spread vary spatially? We will 
answer these questions via the following analyses, 
respectively:  1) Evaluate HRRRE Reliability plots and 
Rank histograms, and compare ensemble mean spatial 

maps to the deterministic HRRR; 2) compare a set of 
ensemble runs with and without stochastic physics and 
quantify QPF differences between them; and 3) evaluate 
spatial maps of ensemble spread.

2.	 Data and methods

a.	 The HRRR Ensemble

	 The HRRRE is a prototype ensemble modeling 
system that uses a single physics package/single 
dynamic core with stochastic perturbations to the 
physical parameterizations and initial and boundary 
condition perturbations to produce an ensemble 
forecast (Kalina et al. 2021). The HRRRE contains 
a 36-member ensemble analysis system and a 
9-member forecast system producing 36-h forecasts, 
although we produce 24-h forecasts in this study 
because we focus our investigation on lead times up 
to 24-h. The HRRRE encompasses an area slightly 
larger than the CONUS with a convection-allowing 
3-km horizontal grid spacing. The HRRRE uses the 
Advanced Research version of the Weather Research 
and Forecasting (WRF-ARW) dynamic core and the 
Rapid Refresh/ High Resolution Rapid Refresh (RAP/
HRRR) physics suite (Benjamin et al. 2016; Olson et 
al. 2019; James et al. 2022; Dowell et al. 2022). The 
HRRRE includes four types of perturbations: initial 
condition (IC) perturbations, boundary condition (BC) 
perturbations, stochastic parameter perturbations (SPP) 
(Palmer 2001), and stochastic perturbations of physics 
tendencies (SPPT) (Buizza et al. 1999). The SPP scheme 
in HRRRE consists of a random pattern generator that 
creates a vertically uniform perturbation field with 
prescribed spatiotemporal correlations, and is applied 
to numerous parameters in numerous physics schemes 
(Kalina et al. 2021). The SPPT scheme perturbs the total 
physics tendencies for temperature, humidity, and wind. 
Because the HRRRE uses a single dynamic core and 
a single physics suite, ensemble spread may be more 
limited than multi-dynamic or multi-physics ensemble 
systems, but this HRRRE design enables statistically 
consistent ensemble distribution (Bowler et al. 2009; 
Berner et al. 2009; Sanchez et al. 2015). More details on 
the HRRRE configuration, including the complete list 
of SPP fields and the magnitudes of their perturbations, 
are provided in Kalina et al. 2021. In this study, we 
use a temporal scale of 72 h instead of 6 h for SPP and 
SPPT perturbations, based on more recent studies at 
the National Oceanic and Atmospheric Administration 
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(NOAA) Global Systems Lab (GSL) that resulted in 
improved ensemble spread and reduced error of near-
surface meteorological fields (Isidora Jankov, personal 
communication). The HRRRE was run in “real-time” at 
NOAA GSL from 2017 through 2021, and evaluations 
of its configuration and verification are informing the 
next-generation ensemble model development, which 
will be based on the new Rapid Refresh Forecast 
System (RRFS) instead of the HRRR. 

b.	 Experimental design

	 We set up and run two continuous HRRRE 
retrospective simulations from 1 February 2019 
through 10 March 2019: a HRRRE control with IC, 
BC, SPP, and SPPT ensemble perturbations (using the 
same configuration as the “real-time” HRRRE run at 
NOAA GSL), and a HRRRE experiment with IC and 
BC perturbations only. This time period encompasses 
five AR events that occurred in California (Table 1). 
Comparing the two simulations can provide insight 
regarding how much SPP and SPPT perturbations 
impact forecasts of AR events over the West CONUS. 
The HRRRE is initialized twice a day at 00 and 12 
UTC using soil state from a companion deterministic 
HRRRv4 retrospective simulation, and 24-h forecasts 
are produced. More details on the deterministic 

HRRRv4 retrospective simulation and the five AR 
events are provided in English et al. (2021).  
	 The choice of evaluation metrics and corresponding 
spatiotemporal domains to average is complex. 
Although evaluating over smaller domains or time 
periods or across individual AR events may facilitate 
identifying differences between the control and the 
experiment, differences are often not statistically 
significant when looking at individual weather events 
or specific geographic locations. Indeed, in English et 
al. (2021), we found that although several AR events 
had some interesting unique characteristics, differences 
between two model runs were not statistically significant 
when evaluating any individual event, and we needed to 
average across all five AR events to observe significant 
differences between two model runs. Hence, we follow 
a similar approach for this study: We evaluate QPF 
across the time period in which the most significant 
precipitation occurred for each AR event (generally 36-h 
or 48-h in length per event; Table 1) over our designated 
AQPI domain (33.38–41.48N, 118.28–123.88W; Fig. 
1), and average across all five AR events. We remove 
a small region near a recently identified faulty rain 
gauge, as discussed further in the next paragraph. We 
evaluate ensemble forecast performance via reliability 
plots (Wilks 1995), rank histograms (Anderson 1996; 
Hamill and Colucci 1997; Talagrand et al. 1997; Wilks 
2019), frequency bias plots, fractions skill score (FSS) 
(Roberts and Lean 2008), and precipitation bias. Model 

Figure 1. Spatial maps of average 6-h accumulation 
(mm), averaged across the 36-h or 48-h peak 
precipitation time periods for all five AR events (Table 
1). a) Stage IV. b) HRRRE control (IC/BC/SPP/SPPT) 
bias (6-h lead time). c) Deterministic HRRRv4 (6-h 
lead time) bias. HRRRE bias is calculated as HRRRE 
ensemble average minus Stage IV; HRRRv4 bias is 
calculated as HRRRv4 minus - Stage IV; blue-green 
colors are a model wet bias and brown colors are a dry 
bias. Comparisons are “matching”; hence, the three 
datasets include initialization times 00 and 12 UTC 
(valid times 06 and 18 UTC) each day. Click image for 
an external version; this applies to all figures hereafter.

Table 1. Time Periods of AR events studied. Times 
listed below are valid times; hence model initialization 
times will differ by each lead time. For all lead time 
evaluations, model cycles are initialized at 00 and 12 
UTC each day; hence, five to six initialization times are 
utilized for each AR event, depending on lead time.

AR Event (2019) Valid Time 
Period Averaged

2-4 Feb 12 UTC 02-Feb to 
12 UTC 04-Feb

13-15 Feb 06 UTC 13-Feb to 
06 UTC 15-Feb

25-27 Feb 06 UTC 25-Feb to 
06 UTC 27-Feb

2-4 Mar 06 UTC 02-Mar to 
06 UTC 04-Mar

5-7 Mar 06 UTC 05-Mar to 
00 UTC 07-Mar

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_1.png
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QPF is compared to Stage IV QPE. Stage IV is an 
hourly/6-hourly product produced by the twelve river 
forecast centers (Lin and Mitchell 2005; Nelson et al. 
2016). Over the AQPI evaluation domain, Stage IV is 
produced by the CNRFC, and is based solely on gauges 
and climatology (i.e., without using radar-derived 
precipitation estimates, due to radar gaps/blockages 
across many parts of California). Though Stage IV 
has some known weaknesses, often associated with 
mountainous regions and frozen precipitation (Nelson et 
al. 2016; Herman and Schumacher 2018), it is generally 
regarded as a high-quality, gridded multisensory QPE 
product, and is often chosen as the reference dataset 
when evaluating other QPE products (Wu et al. 2012; 
Gourley et al. 2010; Lin and Hou 2012). However, all 
QPE products including Stage IV are known to have 
uncertainties in parts of the CNRFC region, particularly 
in mountainous terrain and at temperatures below 
freezing (Peel and Wilson 2008; Smalley et al. 2014; 
Lundquist et al. 2019; Bytheway et al. 2020; English 
et al. 2021). To address these uncertainties, we also 
average ensemble performance over two different 
altitude domains: the AQPI domain at elevations below 
1500 m (eliminating most of the domain that involves 
mountainous terrain and temperatures below freezing, 
where Stage IV is least reliable), and the AQPI domain 
at elevations above 1500 m. Additionally, we remove a 
small region (37.9–38.1 N and 121.4–121.6 W) from our 
computations for Reliability plots and Rank histograms 
to account for a faulty gauge recently identified in 
the Russian River basin. This gauge (Venado) was 
improperly sited and producing accumulations that 
were much too high compared to a co-located weighing 
type gauge (Andrew Martin, personal communication).

3.	 Analysis and discussion

a.	 Ensemble mean spatial precipitation
 
	 While the spatial distribution of precipitation varies 
considerably across the five AR events (see English et 
al. 2021), mean 6-h precipitation is generally highest 
along the Pacific Coast and the Sierra Nevada range, 
and lowest in the Central Valley, (Fig. 1a). Because 
of orographic enhancement, the heaviest precipitation 
occurs in the mountainous regions, particularly the 
coastal mountains north of the San Francisco Bay Area 
and the Sierra Nevada range north of Lake Tahoe, 
where mean precipitation rates reach roughly 20 mm 
(6 h)–1 (160 mm per 48-h AR event). HRRRE control 

mean precipitation compares reasonably well to Stage 
IV (generally within 3 mm (6 h) –1), but is drier along 
much of the Pacific Coast, especially in the mountains 
north of the San Francisco Bay Area (however, the 
recently identified faulty Venado gauge is in this region 
and likely to have been included in the production of 
the Stage IV QPE), and wetter than Stage IV to the east, 
particularly in the Sierra Nevada range (Fig. 1b). 
	 The HRRRE control mean has a somewhat similar 
bias map to the deterministic HRRRv4 (Fig. 1c), which 
shares the same physics as the HRRRE configuration 
studied here, although the HRRRE control dry bias is 
reduced, particularly in the San Francisco Bay Area and 
along the Pacific Coast. The deterministic HRRRv4 dry 
biases versus Stage IV in the San Francisco Bay Area 

Figure 2. Reliability plots of 6-h accumulated 
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) and HRRRE experiment (IC/BC only) at two 
thresholds (2.5 mm and 25 mm) and four lead times 
(6-h, 12-h, 18-h, 24-h) compared to Stage IV. Data 
include the 36-h to 48-h time period in which the most 
significant precipitation for each AR event (Table 1) 
across the designated AQPI domain (33.38–41.48N, 
118.28–123.88W), with a small domain surrounding 
the faulty Venado gauge removed (37.9–38.1N, 121.4–
121.6W). The “no skill” lines indicate where reliability 
and resolution are equal and therefore the forecast has 
zero skill relative to a reference forecast (i.e., random 
chance). Comparisons are “matching”; hence, the 
datasets include any valid times corresponding to the 
respective lead times from the 00 and 12 UTC HRRRE 
initialization times each day.

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_2.png
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and along the Pacific Coast are possibly related to errors 
in the modeled temperature profile and/or the vertical 
distribution of water vapor, while integrated water vapor 
(IWV), wind speed, and wind direction all compared 
well to available observations at nearby Atmospheric 
River Observatories (English et al. 2021), and were 
found in studies with the deterministic HRRRv3 as well 
(Darby et al. 2019; Dougherty et al. 2021). Dougherty 
et al. (2021) suggested that HRRR wind direction may 
be responsible for the HRRR QPF dry bias along the 
Pacific Coast, as 12-h forecasts from the HRRRv3 
had some biases in wind direction compared to nearby 
ARO stations during the 2018/2019 cool season. The 
HRRRv4 wet biases versus Stage IV in the Sierra 
Nevada range are at least partly attributed to errors 
and uncertainties with detecting frozen precipitation in 
QPE products such as Stage IV; when constrained to 
liquid precipitation only, HRRRv4 and Stage IV have 
excellent agreement (English et. al 2021). The HRRRE 
experiment mean bias map looks visually similar to the 
HRRRE control (not shown), and differences between 
the control and experiment are discussed in more depth 
in the following sections.
  
b.	 Reliability plots

	 The HRRRE is compared to Stage IV QPE via 
reliability plots of 6-h accumulation at two precipitation 
thresholds (Fig. 2). A 25-km Gaussian smoother is 
applied to the probability of exceedance forecasts 
to reduce the impact of small location errors. We 
chose 25-km to be consistent with the operational 
High Resolution Ensemble Forecast system version 
2 (HREFv2). A perfect ensemble would match the 
observed frequency at each probability, following the 
black diagonal line. At a 2.5-mm threshold (Fig. 2a), 
HRRRE control forecast probabilities generally agree 
well with Stage IV frequency, particularly at 18-h and 
24-h lead times, where they differ by <5%. At shorter 
lead times, HRRRE control forecast probabilities are 
slightly lower than Stage IV frequencies, particularly 
at probabilities >50%, suggesting the model slightly 
underpredicts the probability of precipitation exceeding 
the given thresholds. At a 25-mm threshold, HRRRE 
control 6-h forecasts agree well with Stage IV frequency 
at probabilities above 50%, but overpredict precipitation 
frequency at lower probabilities. At lead times >6 h, 
the HRRRE control more consistently overpredicts the 
probability of precipitation, and this overprediction 
generally increases with longer lead times, except for 

probabilities from about 55 to 80% where 18-h lead 
times overpredict more than 24-h lead times. 
	 Comparing the HRRRE control to the HRRRE 
experiment can help answer the question: What are the 
impacts of SPP and SPPT perturbations on ensemble 
accuracy and spread? The difference in performance 
metrics between the HRRRE control and experiment 
provide an understanding of the contributions of SPP 

Figure 3. Same as Figure 2, but including only grid 
boxes at <1500 m elevation in the AQPI domain.

Figure 4. Same as Figure 2, but including only grid 
boxes at >1500 m elevation in the AQPI domain.

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_3.png
http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_4.png
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and SPPT to ensemble QPF mean and/or spread, and 
therefore the importance of these perturbations on 
model uncertainty and forecast probabilities for AR 
events impacting the West CONUS. Reliability plots 
for the HRRRE experiment (Figs. 2b, 2d) generally 
differ from the HRRRE control by <5% at a given 
observed frequency (Figs 2a, 2c), suggesting that SPP 
and SPPT perturbations have small contributions to the 
probability distributions. 
	 Next, we produce reliability plots for the low 
(<1500 m) and high (>1500 m) altitude domains (Figs. 
3 and 4, respectively). In the low altitude (<1500 m) 
domain at a 2.5 mm threshold, HRRRE control forecast 
probabilities increase relative to Stage IV frequency 
when including only data below 1500 m than when 
evaluating over the full AQPI domain (Fig. 3a versus 
Fig. 2a, respectively). At forecast probabilities >50%, 
this translates to improved ensemble performance 
at shorter (6-h and 12-h) lead times, and degraded 
performance at longer (18-h and 24-h) lead times. At 
forecast probabilities <50%, this translates to a slight 
overprediction of precipitation probability relative to 
Stage IV. In the low altitude (<1500 m) domain at a 25 
mm threshold, the HRRRE overforecasts precipitation 
probability at lead times 12 h and longer, whereas 
HRRRE underpredicts precipitation probability at 
shorter (6-h) lead times (Fig. 3c). Forecast probabilities 
in the high altitude (>1500 m) domain are generally 
<5% different than probabilities over the full AQPI 
domain at both 2.5 and 25 mm thresholds, except for 
shorter (6-h) lead times at a 25 mm threshold, where 
HRRRE control forecast probabilities increase relative 
to Stage IV in the high altitude (>1500 m) domain (Fig. 
4c versus Fig. 2c, respectively). As with the evaluation 
over the full AQPI domain, reliability plots for the 
HRRRE experiment are similar to the HRRRE control 
(generally differ by <5%) over the low altitude (Fig. 3) 
and high altitude (Fig. 4) domains as well.

c.	 Rank histograms

	 Rank histograms are provided at two lead times 
(6-h and 24-h) to show the relative ranking of the 
observed precipitation among the HRRRE members 
(Fig. 5). A perfect ensemble would have the same 
relative frequency across all ranks, meaning the 
observation is indistinguishable among the model 
ensemble members, suggesting a consistent degree of 
ensemble dispersion. At 6-h lead times, Stage IV falls 
outside the minimum and maximum ensemble members 

slightly more often than expected (about 13–14% rather 
than 10% occurrence), suggesting HRRRE is slightly 
underdispersive (Fig. 5a). The underdispersiveness 
is slightly larger at longer (24-h) lead times (Fig. 5c), 
suggesting the ensemble spread does not sufficiently 
capture forecast uncertainty at longer lead times. When 
evaluating longer (24-h) lead times as a function of 
elevation, the HRRRE is less underdispersive over the 
low elevation (<1500 m) domain (Figs. 6a), and more 
underdispersive over the high elevation (>1500 m) 
domain (Figs. 6c). However, because of uncertainty 
with Stage IV at high elevation, it is unclear whether 
the HRRRE is not accurately capturing the precipitation 
spread, or if there are errors with Stage IV. Indeed, 
the small-scale maxima and minima in the HRRRE 
mean precipitation fields are physically consistent 
with orographic processes, and may not be adequately 
included in the Stage IV data. Regardless, the HRRRE 
was found to be underdispersive in other applications 
as well, such as warm-season convective events (Grim 
et al. 2022). This underdispersiveness is a well-known 
deficiency with model ensembles in general (Berner et 
al. 2017), and is consistently noted in other ensemble 
evaluations of AR events impacting the West CONUS 

Figure 5. Rank Histograms of 6-h accumulated 
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) and HRRRE experiment (IC/BC only) at two 
lead times (6-h and 24-h). The histograms report the 
frequency of occurrence of Stage IV relative to the 
nine HRRRE members. The dashed line represents 
a flat histogram, where Stage IV has a frequency of 
occurrence that is statistically indistinguishable among 
the nine HRRRE members (hence, a total of 10 bins) 
(Wilks 2019).

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_5.png
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(McCollor and Stull 2008; Yuan et al. 2008; Peel and 
Wilson 2008; Lewis et al. 2017). 
	 At 6-h lead times, rank histograms are similar 
between the HRRRE control (Fig. 5a) and HRRRE 
experiment (Fig. 5b); the frequency distributions differ 
by generally <2% for each ensemble member. At 24-h 
lead times, the HRRRE experiment (Fig. 5d) is slightly 
more underdispersive than the HRRRE control (Fig. 
5c). This is true both at low altitudes (Fig. 6b versus 
Fig. 6a, respectively) and high altitudes (Fig. 6d versus 
Fig. 6c, respectively). This suggests that at longer (24-h) 
lead times, the inclusion of SPP and SPPT perturbations 
help increase ensemble spread, and therefore, provide 
a more accurate representation of forecast uncertainty. 

d.	 Frequency bias and fractions skill scores (FSS)

	 HRRRE frequency bias plots show the HRRRE 
control to have an excellent comparison to Stage IV at 
thresholds less than 1.3 mm at all lead times (frequency 
bias is between 0.98 and 1.05) (Fig. 7a). At larger 
thresholds, the HRRRE overforecasts the frequency 
of precipitation (frequency bias greater than one). 
Frequency bias increases at longer lead times at the 
larger thresholds. These results differ from Brown et al. 
(2012), where they found the SREF to underestimate 

heavy precipitation. However, there are many 
differences between the two ensemble systems; the 
HRRRE leverages an hourly cycled data assimilation 
ensemble for model spin up, and is run at convection-
permitting grid spacing and generates a more complex 
and amplified 3-D vertical velocity field, particularly 
when representing orographic forcing and convective 
updrafts. The FSS is highest (approximately 0.8) at 
smallest thresholds, and decreases to less than0.2 at the 
largest thresholds (Fig. 7c). In contrast to frequency 
bias, FSS does not change much at longer lead times 
(generally within 10% at a given threshold).
	 Frequency bias differs by less than 3% between the 
HRRRE control (Fig. 7a) and HRRRE experiment at 
thresholds less than about 30 mm (Fig. 7b). At thresholds 
greater than about 30 mm, the HRRRE experiment has 
a larger frequency bias relative to the control at lead 

Figure 6. Rank Histograms of 6-h accumulated 
precipitation for the HRRRE control (IC/BC/SPP/
SPPT) across two elevation domains at 24-h lead time. 
The histograms report the frequency of occurrence 
of Stage IV relative to the nine HRRRE ensemble 
members. The dashed line represents a flat histogram, 
where Stage IV has a frequency of occurrence that is 
statistically indistinguishable among the nine HRRRE 
members (hence, a total of 10 bins) (Wilks 2019).

Figure 7. Frequency Bias and Fractions Skill Score of 
6-h accumulated precipitation for all of the ensemble 
members in the HRRRE control (IC/BC/SPP/SPPT) 
and HRRRE experiment (IC/BC only) at a range of 
thresholds and four lead times (6-h, 12-h, 18-h, 24-h) 
compared to Stage IV. Data include the 36-h to 48-h 
time period in which the most significant precipitation 
for each AR event (Table 1) across the designated 
AQPI domain (33.38–41.48N, 118.28–123.88W), with 
a small domain surrounding the faulty Venado gauge 
removed (37.9–38.1N, 121.4–121.6W). Comparisons 
are “matching”; hence, the datasets include any valid 
times corresponding to the respective lead times from 
the 00 and 12 UTC HRRRE initialization times each 
day.

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_6.png
http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_7.png
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times 12 h and longer. FSS as a function of threshold 
are also similar between the HRRRE control (Fig. 7c) 
and the HRRRE experiment (Fig. 7d) at all lead times, 
generally differing by less than 3%.
	 Next, we produce frequency bias plots for the 
low (less than 1500 m) and high (greater than 1500 
m) altitude domains (Fig. 8). Frequency bias is larger 
over the high-altitude domain, particularly at shorter 
(6-h) lead times at thresholds greater than 15 mm. In 
particular, for 6-h lead times at a threshold of 25.4 
mm, frequency bias is 1.2 over the low altitude domain 
(Fig. 8a) but is 2.0 over the high-altitude domain (Fig. 
8c) (67% higher). As with the evaluation over the 
full domain, frequency bias differs by less than3% 
between the HRRRE control and HRRRE experiment 
at thresholds less than about 30 mm over both the low 
altitude domain (Fig. 8b versus Fig. 8a, respectively) 
and the high-altitude domain (Fig. 8d versus Fig. 8c, 
respectively).

e.	 Spatial variation of ensemble spread

	 Spatial maps of 6-h accumulated ensemble mean 
and standard deviation for the HRRRE control (6-h lead 
times) illustrate the spatial distribution of ensemble 
spread (Fig. 9). Ensemble standard deviation is larger 
along the Pacific Coast and in the Sierra Nevada range 
(Fig. 9c). However, the standard deviation is strongly 
related to the mean value, which varies significantly 
and also peaks along the Pacific Coast and in the 
Sierra Nevada range (Fig. 9a). When calculating the 

Figure 8. Frequency Bias of 6-h accumulated 
precipitation for all of the ensemble members in the 
HRRRE control (IC/BC/SPP/SPPT) and HRRRE 
experiment (IC/BC only) at a range of thresholds and 
four lead times (6-h, 12-h, 18-h, 24-h) compared to 
Stage IV. Data include the 36-h to 48-h time period in 
which the most significant precipitation for each AR 
event (Table 1) across the two elevation domains within 
the designated AQPI domain (33.38–41.48N, 118.28–
123.88W).

Figure 9. Spatial maps of 6-h accumulation (mm) 
ensemble mean and standard deviation, averaged across 
the 36-h or 48-h peak precipitation time periods for all 
five AR events (Table 1) for the HRRRE control (IC/BC/
SPP/SPPT) and HRRRE Experiment (IC/BC only) (6-h 
lead times). (a,b) ensemble mean (mm). (c,d) ensemble 
standard deviation (mm). (e,f) normalized ensemble 
standard deviation (standard deviation divided by 
ensemble mean). Comparisons are “matching”; hence, 
the datasets include HRRRE initialization times 00 and 
12 UTC (Stage IV valid times 06 and 18 UTC) each 
day. 

http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_8.png
http://nwafiles.nwas.org/jom/articles/2024/2024-JOM4-figs/Fig_9.png
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coefficient of variation (dividing standard deviation 
by the mean precipitation value), ensemble spread per 
unit accumulated precipitation is largest in the Central 
Valley, and lowest in the Sierra Nevada range (Fig. 9e). 
The larger normalized ensemble spread in the Central 
Valley is related to the small values of accumulated 
precipitation (generally <1 mm per 6 h) in the 
denominator. The lower normalized ensemble spread 
in the Sierra Nevada range suggests that the ensemble 
perturbations (IC, BC, SPP, and SPPT) occurring in this 
HRRRE model configuration do not affect precipitation 
processes in the Sierra Nevada range as much as 
in other geographic regions. This suggests that the 
processes responsible for precipitation over the Sierra 
Nevada range (orographic forcing and microphysical 
processes) are not being perturbed as much. However, 
some of the regional differences in coefficient of 
variation are due to biases in mean precipitation. Over 
the Sierra Nevada range, the HRRRE has a mean wet 
bias of roughly 20% (Fig. 1b), which contributes to a 
20% reduction in coefficient of variation. Therefore, 
adjusting to a mean bias of zero would increase the 
coefficient of variation over the Sierra Nevada range by 
about 20% (from roughly 0.4 to about 0.6). Likewise, 
along the Pacific coast, the HRRRE has a mean dry 
bias of about 10%, which contributes to a 10% increase 
in coefficient of variation. Adjusting to a mean bias of 
zero would decrease the coefficient of variation over 
the Pacific coast by about 10% (from roughly 0.9 to 
0.8). This reduces the regional differences, but the 
ensemble spread over the Sierra Nevada range remains 
generally less than other geographic regions, with the 
possible exception of the mountains north of the San 
Francisco Bay Area (recall the recently identified faulty 
Venado gauge in this region). There is some uncertainty 
in this assessment as Stage IV is less reliable over the 
Sierra Nevada range. Conversely, the relatively higher 
ensemble spread over the Coastal Range suggests that 
the ensemble perturbations do have a significant impact 
on precipitation in this region. Spatial maps of the 
HRRRE control ensemble coefficient of variation (Fig. 
9e) appear visually similar to the HRRRE experiment 
(Fig. 9f), suggesting that SPP and SPPT perturbations 
do not meaningfully impact the spatial biases in any 
particular location.

4.	 Conclusions

	 The results presented here are a first evaluation of 
precipitation forecasts of AR events from the HRRRE. 

Probabilistic forecasts from the HRRRE for five 
AR events that impacted California in February and 
March 2019 were investigated to answer three science 
questions:

1.	 How accurate are HRRRE probabilistic  
forecasts of AR events over the West CONUS? 
The ensemble metrics presented here 
(reliability plots and rank histograms) suggest 
that the forecast probability from the HRRRE 
with its current real-time perturbations (IC/
BC/SPP/SPPT) provide a reasonably accurate 
representation of forecast uncertainty of AR 
events impacting central California at 6-h 
to 24-h lead times. Reliability plots (Fig. 2) 
suggest that the ensemble members of the 
HRRRE control have a reliable representation 
of observed frequency across all lead times 
studied (6-h to 24-h) at the 2.5-mm threshold. 
The HRRRE overpredicts the frequency 
of precipitation occurrence at the 25-mm 
threshold. Rank histograms suggest the HRRRE 
spread to be slightly underdispersive, which 
is a common trait of many model ensemble 
systems. The HRRRE is less underdispersive 
at elevations below 1500 m, where Stage IV is 
known to be most reliable, with higher density 
of precipitation gauges, less climatological 
adjustment, and less frozen precipitation. 

2.	 What are the impacts of stochastic physics 
perturbations on ensemble accuracy and 
spread? The differences between the HRRRE 
control and HRRRE experiment are small by 
most metrics investigated here (reliability plots, 
rank histograms, frequency bias, FSS, and 
spatial maps of ensemble mean precipitation 
and standard deviation). This suggests that 
SPP and SPPT perturbations make relatively 
small contributions to ensemble accuracy of 
precipitation forecasts from AR events, which 
is supported by spatial maps of ensemble 
mean precipitation (Fig. 9) that show small 
differences between the HRRRE control and 
HRRRE experiment. One exception is that 
rank histograms of the HRRRE experiment are 
slightly less underdispersive at 24-h lead time, 
suggesting that SPP and SPPT perturbations 
contribute meaningfully to an increase 
of ensemble spread at longer lead times. 
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Overall, IC/BC perturbations make a much 
larger contribution to ensemble performance/
spread than SPP and SPPT perturbations. 

3.	 How does precipitation bias and ensemble 
spread vary spatially? Spatial maps of average 
precipitation (Fig. 1) suggest the HRRRE 
mean reasonably captures the observed spatial 
distribution of precipitation, but is wetter than 
Stage IV over the Sierra Nevada range, and drier 
than Stage IV along the coastal range north of 
the San Francisco Bay Area (however, Stage 
IV may not be reliable in this region due to the 
recently identified faulty Venado gauge). Spatial 
maps of ensemble coefficient of variation show 
that ensemble spread is largest over the Central 
Valley, and smallest over the Sierra Nevada 
range, although a HRRRE precipitation wet 
bias contributes to part of the reduction over 
the Sierra Nevada range. These differences in 
coefficient of variation suggest there is greater 
uncertainty in forecasts over the Central Valley, 
and less uncertainty over the Sierra Nevada 
range. This suggests that the HRRRE ensemble 
perturbations (IC/BC/SPP/SPPT) have a small 
effect on precipitation forecast uncertainty 
over the Sierra Nevada range, and that other 
model parameters/uncertainties are likely at 
play. Rank histograms show the HRRRE to be 
more underdispersive above 1500 m elevation, 
suggesting the ensemble isn’t capturing 
sufficient forecast uncertainty, although Stage 
IV is less reliable at higher elevations.

	 These results demonstrate the value and accuracy of 
probabilistic forecasts of precipitation from the single 
dynamic core/single physics suite used in HRRRE 
during AR events impacting the West CONUS, which 
provides useful guidance towards developing the next-
generation RRFS deterministic model and ensembles 
based on it. Future work exploring perturbations to other 
parameters that might be relevant to the meteorological 
processes present during AR events would be useful. For 
example, Jeworrek et al. (2021) investigated the impacts 
of changing physics, microphysics, and grid spacing 
specifications in the WRF model (on which the HRRR 
is based) for a year of precipitation forecasts in British 
Columbia and concluded that the choice of cumulus and 
microphysics parameterizations had the largest impact 
on precipitation forecasts. Further work to improve the 

reliability of QPE products at high elevations when 
frozen precipitation is present, such as a probabilistic 
QPE product (Bytheway et al. 2022) would be useful to 
better quantify observed precipitation as well as more 
confidently evaluate model QPF accuracy.

	 Acknowledgments.  Helpful comments from a GSL 
internal reviewer (Evan Kalina) and two peer reviewers 
improved this manuscript. This work is funded in 
part by the AQPI research program via NOAA Award 
3RR2NAQ-P02 and by the NOAA Cooperative 
Agreement with CIRES, NA17OAR4320101.

__________________
 

REFERENCES

Anderson, J. L., 1996: A method for producing and evaluating  
	 probabilistic forecasts from ensemble model integrations.  
	 J. Climate, 9, 1518–1530, CrossRef.
Atger, F., 2001: Verification of intense precipitation forecasts  
	 from single models and ensemble prediction systems.  
	 Nonlinear Processes in Geophysics, 8 (6), 401–417,  
	 CrossRef.
Benjamin, S., and Coauthors, 2016: A North American hourly  
	 assimilation and model forecast cycle: The Rapid  
	 Refresh. Mon. Wea. Rev., 144, 1669–1694, CrossRef.
Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer,  
	 2009: A spectral stochastic kinetic energy backscatter  
	 scheme and its impact on flow-dependent predictability  
	 in the ECMWF ensemble prediction system. J. Atmos.  
	 Sci., 66, 603–626, CrossRef.    
____, and Coauthors, 2017: Stochastic parameterization:  
	 Toward a new view of weather and climate models. Bull.  
	 Amer. Meteor. Soc., 98, 565–588, CrossRef.
Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G.  
	 J. Shutts, 2009: The local ETKF and SKRB: Upgrades  
	 to the MOGERPS short-range ensemble prediction  
	 system. Quart. J. Roy. Meteor. Soc., 135, 767–776,  
	 CrossRef.  
Brown, J. D., D.-J. Seo, and J. Du, 2012: Verification of  
	 precipitation forecasts from NCEP’s Short Range  
	 Ensemble Forecast (SREF) system with reference to  
	 ensemble streamflow prediction using lumped hydrologic  
	 models. J. Hydrometeorol., 13 (3), 808–836, CrossRef.
____, L. Wu, M. He, S. Regonda, H. Lee, and D-J Seo, 2014:  
	 Verification of temperature, precipitation, and streamflow  
	 forecasts from the NOAA/NWS Hydrologic Ensemble  
	 Forecast Service (HEFS): 1. Experimental design and  
	 forcing verification. J. Hydrology, 519, 2869–288,  
	 CrossRef.  

https://journals.ametsoc.org/view/journals/clim/9/7/1520-0442_1996_009_1518_amfpae_2_0_co_2.xml
https://npg.copernicus.org/articles/8/401/2001/
https://doi.org/10.1175/MWR-D-15-0242.1
https://doi.org/10.1175/2008JAS2677.1
https://doi.org/10.1175/BAMS-D-15-00268.1.
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.394
https://journals.ametsoc.org/view/journals/hydr/13/3/jhm-d-11-036_1.xml
https://doi.org/10.1016/j.jhydrol.2014.05.028


	 English et al.	 NWA Journal of Operational Meteorology	 15 MAY 2024

ISSN 2325-6184, Vol. 12, No. 4 51

Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic  
	 representation of model uncertainties in the ECMWF  
	 ensemble prediction system. Quart. J. Roy. Meteor. Soc.,  
	 125, 2887–2908, CrossRef. 
Bytheway, J. L., M. Hughes, K. Mahoney, and R. Cifelli, 2020:  
	 On the uncertainty of high-resolution hourly quantitative  
	 precipitation estimates in California. J. Hydrometeor.,  
	 21, 865–879, CrossRef. 
____, ____, R. Cifelli, K. Mahoney, and J. M. English, 2022: 
	 Demonstrating a probabilistic quantitative precipitation  
	 estimate for evaluating precipitation forecasts in complex  
	 terrain. Wea. Forecasting, 37, 45–64, CrossRef. 
Cannon, F., F. M. Ralph, A. M. Wilson, and D. P. Lettenmaier,  
	 2017: GPM satellite radar measurements of precipitation  
	 and freezing level in atmospheric rivers: Comparison  
	 with ground-based radars and reanalyses. Journal of  
	 Geophysical Research: Atmospheres, 122, 12,747– 
	 12,764, CrossRef. 
____, J. M. Cordeira, C. W. Hecht, J. R. Norris, A. Michaelis,  
	 R. Demirdjian, and F. M. Ralph, 2020: GPM Satellite  
	 Radar Observations of Precipitation Mechanisms in  
	 Atmospheric Rivers. Mon. Wea. Rev., 148, 1449–1463,  
	 CrossRef.
Cifelli, R., V. Chandrasekar, H. Chen, and L. E. Johnson, 2018:  
	 High resolution radar quantitative precipitation  
	 estimation in the San Francisco Bay Area: Rainfall  
	 monitoring for the urban environment. J. Meteor. Soc.  
	 Japan, 96A, 141–155, CrossRef.
____, and Coauthors, 2022: Advanced quantitative  
	 precipitation information: Improving monitoring and  
	 forecasts of precipitation, streamflow, and coastal  
	 flooding in the San Francisco Bay area, under review.  
Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan,  
	 and C. A. Talbot,  2019: Atmospheric rivers drive flood  
	 damages in the western United States. Science 
	 Advances, 5 (12), eaax4631, CrossRef.
Darby, L. S., A. B. White, D. J. Gottas, and T. Coleman,  
	 2019: An evaluation of integrated water vapor, wind, and  
	 precipitation forecasts using water vapor flux  
	 observations in the Western United States. Wea.  
	 Forecasting, 34, 1867–1888, CrossRef. 
DeFlorio, M. J., D. E. Waliser, B. Guan, D. A. Lavers, F. M.  
	 Ralph, and F. Vitart, 2018: Global assessment  
	 of atmospheric river prediction skill. Journal of  
	 Hydrometeorology, 19 (2), 409–426.
DeHaan, L. L., A. C. Martin, R. R.Weihs, L. Delle  
	 Monache, and F. M. Ralph, 2021: Object-based  
	 verification of atmospheric river predictions in the  
	 Northeast Pacific. Weather and Forecasting, 36 (4),  
	 pp.1575–1587.
Demargne, J., J. D. Brown, Y. Liu, D.-J. Seo, L. Wu,  
	 Z. Toth, and Y. Zhu, 2010: Diagnostic verification of  
	 hydrometeorological and hydrologic ensembles. Atmos.  
	 Sci. Lett., 11 (2), 114–122, CrossRef.

____, and Coauthors, 2014: The science of NOAA’s  
	 Operational Hydrologic Ensemble Forecast Service.  
	 Bull. Am. Meteorol. Soc., 95 (1), 79–98, CrossRef.
Dettinger, M., 2011: Climate change, atmospheric rivers  
	 and floods in California—A multimodel analysis of  
	 storm frequency and magnitude changes. J. Amer. Water  
	 Resour. Assoc., 47, 514–523, CrossRef.
____, 2013: Atmospheric rivers as drought busters on the  
	 U.S. West Coast. J. Hydrometeor., 14, 1721–1732.
Dougherty, K. J., J. D. Horel, and J. E. Nachamkin, 2021:  
	 Forecast skill for California heavy precipitation periods  
	 from the High-Resolution Rapid Refresh Model and the  
	 Coupled Ocean-Atmospheric Mesoscale Prediction  
	 System, Wea. Forecasting, 36, 2275-2288, CrossRef.
Dowell, D. C. and Coauthors, 2022: The High-Resolution  
	 Rapid Refresh (HRRR): An hourly updating convection- 
	 allowing forecast model. Part 1: Motivation and  
	 system description. Wea. And Forecasting, 37, 1371– 
	 1395,  CrossRef.
Du, J., and Coauthors, 2009: NCEP Short-Range Ensemble  
	 Forecast (SREF) system upgrade in 2009. Extended  
	 Abstracts, 19th Conf. on Numerical Weather Prediction  
	 and 23rd Conf. on Weather Analysis and Forecasting,  
	 Omaha, NE, Amer. Meteor. Soc., 4A.4. [Available online  
	 at http://ams.confex.com/ams/23WAF19NWP/ 
	 techprogram/paper_153264.htm.] 
English, J. M., D. D. Turner, T. I. Alcott, W. R. Moninger, J.  
	 L. Bytheway, R. Cifelli, and M. Marquis, 2021:  
	 Evaluating operational and experimental HRRR model  
	 forecasts of atmospheric river events in California.  
	 Weather and Forecasting, 36, 1925–1944, CrossRef.  
Gershunov, A., and Coauthors, 2019: Precipitation regime  
	 change in Western North America: the role of  
	 Atmospheric Rivers. Sci. Rep., 9, 9944, CrossRef. 
Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014:  
	 Atmospheric rivers: A mini‑review. Front. Earth Sci., 2,  
	 2.1– 2.6, CrossRef. 
Gowan, T. M., W. J. Steenburgh, and C. S. Schwartz, 2018:  
	 Validation of mountain precipitation forecasts from the  
	 convection-permitting NCAR ensemble and operational  
	 forecast systems over the Western United States. Wea.  
	 Forecasting, 33, 739–765, CrossRef. 
Gourley, J. J., Y. Hong, Z. L. Flamig, L. Li, and J. Wang,  
	 2010: Intercomparison of rainfall estimates from radar,  
	 satellite, gauge, and combinations for a season of record  
	 rainfall. J. Appl. Meteor. Climatol., 49, 437–452, 
	 CrossRef. 
Grim, J. A., J. O. Pinto, T. Blitz, K. Stone, and D. C.  
	 Dowell, 2022: Biases in the prediction of convective  
	 storm characteristics with a convection allowing  
	 ensemble. Wea. Forecasting, 37, 65–83, CrossRef.  
Grimit, E. P., and C. F. Mass, 2002: Initial results of a  
	 mesoscale short-range ensemble forecasting system  
	 over the Pacific Northwest. Wea. Forecasting, 17, 192– 
	 205, CrossRef. 

https://doi.org/10.1002/qj.49712556006
https://doi.org/10.1175/ JHM-D-19-0160.1
https://doi.org/10.1175/WAF-D-21-0074.1
https://doi.org/10.1002/ 2017JD027355
https://doi.org/10.1175/MWR-D-19-0278.1
https://www.jstage.jst.go.jp/article/jmsj/96A/0/96A_2018-016/_article/-char/en
https://doi.org/10.1126/sciadv.aax4631
https://doi.org/10.1175/WAF-D-18-0159.1
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/asl.261
http://dx.doi.org/10.1175/BAMS-D-12-00081.1
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-1688.2011.00546.x
https://journals.ametsoc.org/view/journals/wefo/36/6/WAF-D-20-0182.1.xml
https://doi.org/10.1175/WAF-D-21-0151.1
http://ams.confex.com/ams/23WAF19NWP/techprogram/paper_153264.htm
http://ams.confex.com/ams/23WAF19NWP/techprogram/paper_153264.htm
https://journals.ametsoc.org/view/journals/wefo/36/6/WAF-D-21-0081.1.xml
https://doi.org/10.1038/s41598-019-46169-w
https://doi.org/10.3389/feart.2014.00002
https://doi.org/10.1175/WAF-D-17-0144.1
https://journals.ametsoc.org/view/journals/apme/49/3/2009jamc2302.1.xml
https://doi.org/10.1175/WAF-D-21-0106.1
https://journals.ametsoc.org/view/journals/wefo/17/2/1520-0434_2002_017_0192_iroams_2_0_co_2.xml


	 English et al.	 NWA Journal of Operational Meteorology	 15 MAY 2024

ISSN 2325-6184, Vol. 12, No. 4 52

Hamill, T. M., and S. J. Colucci, 1997: Verification of Eta- 
	 RSM ensemble probabilistic precipitation forecasts.  
	 Mon. Wea. Rev., 125, 1312–1327, CrossRef.
____, G.T. Bates, J. S.Whitaker, D. R. Murray, M. Fiorino,  
	 T. J. Galarneau Jr., Y. Zhu, and W. Lapenta, 2013:  
	 NOAA’s second-generation global medium-range  
	 ensemble reforecast dataset. Bull. Am. Meteorol. Soc.,  
	 94, 1553–1556, CrossRef. 
Herman, G. R. and R. S. Schumacher, 2018: Money doesn’t  
	 grow on trees, but forecasts do: Forecasting extreme  
	 precipitation with random forests. Monthly Weather  
	 Review, 146, 1571-1600, CrossRef. 
Huang, X., D. L. Swain, D. B. Walton, S. Stevenson, and  
	 A. D. Hall, 2020: Simulating and evaluating atmospheric  
	 river-induced precipitation extremes along the U.S. Pacific  
	 Coast: Case studies from 1980–2017. Journal  
	 of Geophysical Research: Atmospheres, 125 (4),  
	 e2019JD031554, CrossRef.
James, E. P. and coauthors, 2022: The High-Resolution  
	 Rapid Refresh (HRRR): An hourly updating convection- 
	 allowing forecast model. Part II: Forecast performance.  
	 Wea. Forecasting, 37, 1397–1417, CrossRef. 
Jeworrek, J., G. West, and R. Stull, 2021: WRF precipitation  
	 performance and predictability for systematically varied  
	 parameterizations over complex terrain. Wea.  
	 Forecasting, 36, 893–913, CrossRef.
Juang, H.-M. and M. Kanamitsu, 1994: The NMC nested  
	 regional spectral model. Mon. Wea. Rev., 122, 3–26,  
	 CrossRef.
____, S.-Y. Hong, and M. Kanamitsu, 1997: The NCEP  
	 regional spectral model: An update. Bull. Amer. Meteor.  
	 Soc., 78, 2125–2144, CrossRef.
Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner,  
	 D. Dowell, and C. Alexander, 2021: A progress report  
	 on the development of the High-Resolution Rapid  
	 Refresh ensemble. Wea. Forecasting, 36, 791–804,  
	 CrossRef. 
Kingsmill, D. E., P. J. Neiman, F. M. Ralph, and A. B. White,  
	 2006: Synoptic and topographic variability of Northern  
	 California precipitation characteristics in landfalling  
	 winter storms during CALJET. Mon. Wea. Rev., 134,  
	 2072–2094, CrossRef. 
Lavers, D. A., and Coauthors, 2020: Forecast errors and  
	 uncertainties in atmospheric rivers. Weather and  
	 Forecasting, 35 (4), 1447–1458, CrossRef.
Lewis, W. R., W. J. Steenburgh, T. I. Alcott, and J. J. Rutz,  
	 2017: GEFS precipitation forecasts and the implications  
	 of statistical downscaling over the western United States.  
	 Wea. Forecasting, 32, 1007–1028, CrossRef.
Lin, X. and A.Y. Hou, 2012: Estimation of rain intensity  
	 spectra over the continental United States using ground  
	 radar–gauge measurements. J. Climate, 25, 1901-1915,  
	 CrossRef. 

Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV  
	 hourly precipitation analyses: Development and  
	 applications. Preprints, 19th Conf. on Hydrology, San  
	 Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at  
	 https://ams.confex.com/ams/pdfpapers/83847.pdf.]
Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick, 2019:  
	 Our skill in modeling mountain rain and snow is  
	 bypassing the skill of our observational networks. Bull.  
	 Amer. Meteor. Soc., 100, 2473–2490, CrossRef. 
Martin, A., F. M. Ralph, R. Demirdjian, L. DeHaan, R. Weihs,  
	 J. Helly, D. Reynolds, and S. Iacobellis, 2018: Evaluation  
	 of atmospheric river predictions by the WRF Model using  
	 aircraft and regional mesonet observations of orographic  
	 precipitation and its forcing. Journal of  
	 Hydrometeorology, 19 (7), 1097–1113, CrossRef.
Mathiesen, P. and J. Kleissl, 2011: Evaluation of numerical  
	 weather prediction for intra-day solar forecasting in  
	 the continental United States. Solar Energy, 85, 967– 
	 977, CrossRef. 
McCollor, D., and R. Stull, 2008: Hydrometeorological  
	 short-range ensemble forecasts in complex terrain. Part  
	 I: Meteorological evaluation. Wea. Forecasting, 23, 533– 
	 556, CrossRef.
Nelson, B. R., O. P. Prat, D.-J. Seo, and E. Habib, 2016:  
	 Assessment and implications of NCEP Stage  
	 IV quantitative precipitation estimates for product  
	 intercomparisons. Wea. Forecasting, 31, 371–394,  
	 CrossRef. 
Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M.  
	 Pagowski, and K. Suselj, 2019: A description of the  
	 MYNN-EDMF scheme and the coupling to other  
	 components in WRF-ARW. NOAA Tech. Memo OAR  
	 GSD-61, 37 pp., CrossRef. 
Palmer, T. N., 2001: A nonlinear dynamical perspective on  
	 model error: A proposal for non-local stochastic-dynamic  
	 parameterization in weather and climate prediction  
	 models. Quart. J. Roy. Meteor. Soc., 127, 279–304,  
	 CrossRef.
Peel, S. and L. J. Wilson, 2008: A Diagnostic Verification  
	 of the precipitation forecasts produced by the Canadian  
	 Ensemble Prediction System. Wea. Forecasting, 23,  
	 596–616, CrossRef. 
Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite  
	 and CALJET aircraft observations of atmospheric rivers  
	 over the eastern North Pacific Ocean during the winter  
	 of 1997/98. Monthly Weather Review, 132 (7), 1721– 
	 1745. CrossRef. 
____, E. Sukovich, D. Reynolds, M. Dettinger, S. Weagle,  
	 W. Clark, and P. J. Neiman, 2010: Assessment of  
	 extreme quantitative precipitation forecasts and  
	 development of regional extreme event thresholds using  
	 data from HMT-2006 and COOP observers. J.  
	 Hydrometeor., 11, 1286–1304, CrossRef. 

https://journals.ametsoc.org/view/journals/mwre/125/6/1520-0493_1997_125_1312_voersr_2.0.co_2.xml?tab_body=abstract-display
http://dx.doi.org/10.1175/BAMS-D-12-00014.1
https://doi.org/10.1175/MWR-D-17-0250.1
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD031554
https://doi.org/10.1175/WAF-D-21-0130.1
https://doi.org/10.1175/WAF-D-20-0195.1
https://journals.ametsoc.org/view/journals/mwre/122/1/1520-0493_1994_122_0003_tnnrsm_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/78/10/1520-0477_1997_078_2125_tnrsma_2_0_co_2.xml?tab_body=abstract-display
https://journals.ametsoc.org/view/journals/wefo/36/3/WAF-D-20-0098.1.xml
https://doi.org/10.1175/MWR3166.1
https://journals.ametsoc.org/view/journals/wefo/35/4/wafD200049.xml
https://doi.org/10.1175/WAF-D-16-0179.1
https://doi.org/10.1175/JCLI-D-11-00151.1
https://ams.confex.com/ams/pdfpapers/83847.pdf
https://doi.org/10.1175/BAMS-D-19-0001.1
https://journals.ametsoc.org/view/journals/hydr/19/7/jhm-d-17-0098_1.xml
https://doi.org/10.1016/j.solener.2011.02.013
https://journals.ametsoc.org/view/journals/wefo/23/4/2008waf2007063_1.xml
https://doi.org/10.1175/WAF-D-14-00112.1
https://doi.org/10.25923/n9wm-be49
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712757202
https://journals.ametsoc.org/view/journals/wefo/23/4/2008waf2006099_1.xml
https://doi.org/10.1175/15200493(2004)132%3c1721:SACAOO%3e2.0.CO;2
https://journals.ametsoc.org/view/journals/hydr/11/6/2010jhm1232_1.xml


	 English et al.	 NWA Journal of Operational Meteorology	 15 MAY 2024

ISSN 2325-6184, Vol. 12, No. 4 53

Roberts, N. M. and H. W. Lean, 2008: Scale-selective  
	 verification of rainfall accumulations from high- 
	 resolution forecasts of convective events. Mon. Wea.  
	 Rev., 136, 78-97, CrossRef. 
Rodwell, M. J., 2006: Comparing and combining deterministic  
	 and ensemble forecasts: how to predict rainfall occurrence  
	 better. ECMWF Newsletter, 106, 17–23, CrossRef. 
Sanchez, C., K. D. Williams, and M. Collins, 2015: Improved  
	 stochastic physics schemes for global weather and  
	 climate models. Quart. J. Roy. Meteor. Soc., 142, 147– 
	 159, CrossRef. 
Seo, D.-J., J. Demargne, L. Wu, Y. Liu, J. D. Brown, S.  
	 Regonda, and H. Lee, 2010: Hydrologic ensemble  
	 prediction for risk-based water resources management  
	 and hazard mitigation. In: 4th Federal Interagency  
	 Hydrologic Modeling Conference, Las Vegas, NV, June  
	 27–July 1, 2010, CrossRef.
Skamarock, W. C., and Coauthors, 2019: A Description of  
	 the Advanced Research WRF Version 4. NCAR Tech.  
	 Note NCAR/TN-556+STR, 145 pp., CrossRef. 
Smalley, M., T. L’Ecuyer, M. Lebsock, and J. Haynes, 2014:  
	 A Comparison of Precipitation Occurrence from the  
	 NCEP Stage IV QPE Product and the CloudSat Cloud  
	 Profiling Radar. J. Hydrometeor., 15, 444–458, CrossRef.
Stone, R. E., C. A. Reynolds, J. D. Doyle, R. H. Langland, N.  
	 L. Baker, D. A. Lavers, and F. M. Ralph, 2020:  
	 Atmospheric river reconnaissance observation impact in  
	 the Navy Global Forecast System. Monthly Weather  
	 Review, 148 (2), 763–782, CrossRef.
Talagrand, O., R. Vautard, and B. Strauss, 1997: Evaluation  
	 of probabilistic prediction systems. Proc. ECMWF  
	 Workshop on Predictability, Reading, United Kingdom,  
	 ECMWF, 1–25, CrossRef.
Vokoun, M. and M. Hanel, 2018: Comparing ALADIN-CZ  
	 and ALADIN-LAEF precipitation forecasts for  
	 hydrological modelling in the Czech Republic. Advances  
	 in Meteorology, 2018,  Article ID 5368438, 14 pps.,  
	 CrossRef.
Wick, G. A., P. J. Neiman, F. M. Ralph, and T. M. Hamill,  
	 2013: Evaluation of forecasts of the water vapor  
	 signature of atmospheric rivers in operational numerical  
	 weather prediction models. Wea. Forecasting, 28, 1337– 
	 1352, CrossRef. 
Wilks, D. S., 1995: Statistical Methods in the Atmospheric  
	 Sciences. International Geophysics Series, Vol. 59,  
	 Academic Press, 407 pp.
____, 2019: Indices of rank histogram flatness and their  
	 sampling properties. Mon. Wea. Rev., 147, 763–769,  
	 CrossRef. 
Wu., W., D. Kitzmiller, and S. Wu, 2012: Evaluation of  
	 radar precipitation estimates from the National Mosaic  
	 and Multisensor Quantitative Precipitation Estimation  
	 System and the WSR-88D Precipitation Processing  
	 System over the Conterminous United States”, J.  
	 Hydrometeorology, 13, 1080-1093, CrossRef. 

Yuan, H., S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and  
	 H. H. Juang, 2005: Verification of probabilistic  
	 quantitative precipitation forecasts over the Southwest  
	 United States during winter 2002/03 by the RSM  
	 Ensemble System. Mon. Wea. Rev., 133, 279–294,  
	 CrossRef.
Yuan, H., J. A. McGinley, P. J. Schultz, C. J. Anderson, and C.  
	 Lu, 2008: Short-range precipitation forecasts from time- 
	 lagged multimodel ensembles during the HMT- 
	 West-2006 campaign. J. Hydrometeor., 9, 477–491,  
	 CrossRef.
Zhang, H. and Z. Pu, 2010: “Beating the Uncertainties:  
	 Ensemble Forecasting and Ensemble-Based Data  
	 Assimilation in Modern Numerical Weather Prediction”,  
	 Advances in Meteorology, Vol. 2010, Article ID 
	 432160, CrossRef.
Zhao, P., Q.J. Wang, W. Wu, and Q. Yang, 2020: Which  
	 precipitation forecasts to use? Deterministic versus  
	 coarser-resolution ensemble NWP models. Quart. J.  
	 Roy. Meteor. Soc., 2021, 147, 900–913, CrossRef. 
Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for  
	 moisture fluxes from atmospheric rivers. Mon. Wea.  
	 Rev., 126, 725–735, CrossRef. 

https://journals.ametsoc.org/view/journals/mwre/136/1/2007mwr2123.1.xml?tab_body=pdf
https://www.ecmwf.int/en/elibrary/80488-comparing-and-combining-deterministic-and-ensemble-forecasts-how-predict-rainfall
https://doi.org/10.1002/qj.2640
https://d1wqtxts1xzle7.cloudfront.net/45261894/Hydrologic_Ensemble_Prediction_for_Risk-20160501-27633-n6o4ut-libre.pdf?1462154942=&response-content-disposition=inline%3B+filename%3DHydrologic_ensemble_prediction_for_risk.pdf&Expires=1705774766&Signature=J1luh2VMMId3zriA7aflv785Auhv4sBSWbu0ZQrQDYL20Huv284kjR0sNbW14Ga2VObxXot6HvuuJSY5bC46v~5PdcJ5PORsdhvCX7f37fh2TRy1FYDDZ2TdHiSPVmCEn3VAbsBk4alwnJyYMmrdAzNAq1S8LjWyOn4MaDeX4zQdNmW-0zvtJExrrfWckHjFc4ttWNOGhj9gEfFF1TBVoODmVNZAJB9knbVHkNVrHsLqSlmDhvavg7JzW6CcP~hfJIBHjVwOucB7tuEwoC2kz2W5HHmHnGff5g2maJlICUBAQI2gArMXqSvOqe594BAC5SDk0YvPWG6SizpPhYbC6g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://figshare.com/articles/journal_contribution/A_Description_of_the_Advanced_Research_WRF_Version_4/7369994
https://doi.org/10.1175/JHM-D-13-048.1
https://journals.ametsoc.org/view/journals/mwre/148/2/mwr-d-19-0101.1.xml
http://www.ecmwf.int/publications/library/do/references/list/16233
https://doi.org/10.1155/2018/5368438
https://journals.ametsoc.org/view/journals/wefo/28/6/waf-d-13-00025_1.xml?alreadyAuthRedirecting
https://journals.ametsoc.org/view/journals/mwre/147/2/mwr-d-18-0369.1.xml?tab_body=fulltext-display
https://doi.org/10.1175/JHM-D-11-064.1
https://journals.ametsoc.org/view/journals/mwre/133/1/mwr-2858.1.xml
https://journals.ametsoc.org/view/journals/hydr/9/3/2007jhm879_1.xml?tab_body=fulltext-display
https://doi.org/10.1002/qj.3952
https://doi.org/10.1155/2010/432160
https://journals.ametsoc.org/view/journals/mwre/126/3/1520-0493_1998_126_0725_apafmf_2.0.co_2.xml



