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Author's note: The first in a series of continuing education 
articles on Quasi-Geostrophic (QG) theory presented here may 
seem a bit academic, rather than operationally oriented. These 
fundamentals, however, are necessaty to set the stage for more 
operationally useful material that willfollow infuture articles. 

1. Introduction and Motivation 

Quasi-geostrophic theory (see Holton 1992 or Bluestein 1992 
for a thorough review of this subject) has been the backbone 
of synoptic-scale weather forecasting in the middle latitudes 
for decades (Sanders and Hoskins 1990). It's simplicity has 
allowed weather forecasters to successfully diagnose large­
scale vertical motions and height tendencies that result from 
easily understood physical concepts (Dun'an and Snellman 
1987). Diagnostics such as mid-tropospheric vorticity advection 
and low-level temperature-advection, vorticity advection by the 
thermal wind (known to some as PIV AlNIV A, Trenberth 1978), 
and divergence patterns of Q-vectors (Hoskins et al. 1978; 
Hoskins and Pedder 1980) have all been used effectively in 
searching for areas of large-scale vertical motions. In turn, these 
vertical motion patterns have provided insight into familiar 
conceptual models such as the secondary circulations around the 
entrance and exit regions of jet streaks and near frontal systems. 

Three common charts used to diagnose patterns of vertical 
velocities include advection of vorticity at 500 mb (Fig. 1a), 
advection of vorticity by the thermal wind (Fig. 1 b), and diver­
gence of Q-vectors (Fig. lc). These tools should be very famil­
iar to forecasters and most can glance at the diagrams and 
quickly locate the areas of concern. What is not well-known 
(or remembered) is that all three methods originate from the 
same QG approximation. Additionally, forecasters tend to for­
get or overlook the basis and assumptions that define the QG 
approximation and may even employ these QG tools inappropri­
ately . 

Part of this lack of understanding can be explained in histori­
cal terms. In the days of facsimile or remotely produced weather 
charts, it was difficult to implement or utilize various QG tools 
effectively (Dunn 1991). Forecasters were limited to simple 
graphical signatures such as SOO-mb vorticity advection and 
advection of SOO-mb vorticity by the 1000-500 mb thickness. 
Through repetition of these limited techniques, weather predic­
tion became more of a "pattern-matching" exercise versus a 
true scientific analysis of what the numerical models were trying 
to depict. In this framework, it was easy to forget the basic 
underlying assumptions and other applications of QG theory. 

With the advent of economical computer power and the 
availability of gridded data at many forecast offices, QG theory 
and its associated tools have experienced something of a rebirth. 
Values of QG forcing such as positive advection of geostrophic 
vorticity by the geostrophic wind and Q-vector convergence 
can be calculated and displayed in a matter of seconds on both 
personal computers and higher-powered scientific workstations. 
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Forecasters have been and are currently gaining the ability to 
calculate a!ld display not only the various QG terms, but virtu­
ally any meteorological field. Cheaper computing power is also 
affecting the grids received at forecast offices as the operational 
numerical weather prediction models trend downward toward 
the mesoscale. 

With these increased capabilities comes the responsibility to 
keep current in the science and to "rediscover" the wealth of 
information previously mastered in academic and professional 
careers. This wealth includes a remembrance of the limitations 
as well as the various applications of QG theory. Forecasters 
need to understand what to expect from QG theory and to learn 
when it may not explain all of the forcings in an area of interest. 

It is also important to realize that some operational models 
are approaching the scale where QG assumptions are less valid 
(e.g., 29 Km and 10 Km versions of the mesoscale Eta model, 
see Black 1994 for a description of the mesoscale Eta model) . 
To this end, forecasters need to know WHEN NOT to use 
the QG approximation. Synoptic-scale diagnosis will remain 
important, however, since mesoscale models tend to error sig­
nificantly when errors in the large-scale forecast can be identi­
fied. Additionally, mesoscale models typically use synoptic­
scale models for boundary conditions, and errors in these bound­
ary conditions can lead to significant errors on the mesoscale. 

With these thoughts in mind, a series of continuing education 
articles has been developed. Unlike many academic experi­
ences, the articles focus on the physical meaning of various 
QG concepts rather than dwell on mathematical derivation. 
Operational examples and usage are also emphasized. Unless 
stated otherwise, it is assumed that the articles are applicable 
mainly to the mid-latitudes. The series does not propose that 
QG tools are the best or only way to diagnose the synoptic­
scale variables . The historical usage and simplicity of these 
methods does, however, make QG-related topics a natural place 
to commence a continuing education series. 

The articles deal with several topics including: the meaning 
of QG, examples of QG approximation, the traditional omega 
equation, the Trenberth (1978) formulation, the Q-vector for­
mulation (Hoskins et al. 1978), and an explanation of Q-vectors 
(Hoskins and Pedder 1980). It is hoped that these articles will 
bring the reader up-to-date with QG-related tools and assump­
tions, and better prepare him/her for rapid changes that continue 
to occur in operational forecasting. This first installment deals 
with the question: What does quasi-geostrophic really mean? 

2. Starting Point-Basic Momentum Equations 

In order to derive the meaning of quasi-geostrophic, It IS 
important to first understand the simplest balance state in the 
atmosphere-geostrophic balance. Recall the terms from the 
horizontal momentum equations (in isobaric coordinates): 
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Fig. 1. Three charts to infer patterns of vertical motion in the mid­
troposphere valid 0000 UTe 17 August 1995: (a) shows geopotential 
heights (solid, 80-m interval) and absolute vorticity (dashed, 2 x 10- 5 

S-1 interval) at 500 mb from which positive or negative vorticity 
advection can be estimated, (b) displays 1000-500 mb thickness 
(solid, 50-m interval) and absolute vorticity at 500 mb (dashed, 
2 x 10-5 S-1 interval) from which advection of the vorticity by the 
thermal wind can be deduced, and (c) shows the divergence of Q­
vectors at 500 mb where convergence (dashed) implies upward 
motion and divergence (solid) implies downward motion (in units of 
K m- 2 S-1, not scaled by static stability parameter). 
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These equations are in the same form as Newton's Second Law 
which says that the acceleration of a parcel equals the sum of 
the forces (per unit mass) acting on that parcel. (All terms are 
in the form of accelerations, but terms on the right hand side 
can be thought of as forces as long as it is remembered that 
these terms are actually forces per unit mass.) Thus, equations 
(1) and (2) state "the ac<;:eleration of an air parcel (left hand 
side-LHS) is equal to the sum of the accelerations on the 
right hand side (RHS). The terms on the RHS can be thought 
of as the physical mechanisms which produce a parcel's acceler­
ation. In short, the terms represent: 

• A = acceleration of a parcel of air 
• B = coriolis acceleration 
• C = height gradient acceleration (like pressure gradient 

acceleration) 
• D = frictional acceleration 

Both the height gradient and frictional terms are fairly easy to 
understand. The coriolis term results from a coordinate system 
that is fixed to the rotating earth. Remember that an object is 
accelerating unless it is motionless or moving with a constant 
velocity with respect to a point in space. If one is standing on 
the earth, he/she is accelerating simply due to the earth's rota­
tion. This acceleration is typically taken into account in a term 
dealing with the gravitational acceleration. An additional term, 
the coriolis acceleration, is necessary if this person is moving 
on the sUlface of the earth. 

Equations (1) and (2) above are the Lagrangian forms of the 
momentum equations, i.e., moving along with a parcel of air 
or following the airflow. For the change of wind with time at 
a point (as required in most meteorological applications), the 
Eulerian form is required. The LHS of (1) and (2) may be 
rewritten: 

Du au au au au 
- + u- + v - + w- (3) 
Dt at ax ay ap 
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These equations simply show that the acceleration of a parcel 
is due to the change in the wind with time at a point (A) and 
the non-linear advection terms (B). The advection terms are 
not as easily understood because of the non-linearity (multiply­
ing wind components by wind components), but it might be 
thought of as sort of a "wind blowing the wind along". Com­
bining (1) and (3) as well as (2) and (4) gives the Eulerian form: 

au au au au a<!> 
at + u ax + v ay + W ap = fv - ax + F.. (5) 

av av av av 
+u-+v-+w-

at ax ay ap 
a<!> -fu - - + FI' ay . (6) 



Volume 21 Number 1 September, 1996 

which gives (with minor rearrangement) the change in wind 
with time at a point. 

3. The Simplest Balance 

It's no secret that the atmosphere tries to remain in a balanced 
state. In fact, above the earth's surface (well away from the 
boundary layer), the atmosphere is always nearly in balance­
geostrophic balance. Assuming frictionless flow and no acceler­
ation of a parcel (LHS = 0), (1) and (2) become: 

fv = a<!> Ju = _ a<!> (7) 
g ax g ay 

These equations simply show that the coriolis acceleration is 
balanced by the height gradient acceleration (Fig. 2)-the defi­
nition of geostrophic balance. The ug and v g terms are the x 
and y components of the geostrophic wind, respectively. A 
more rigorous scale analysis would show that the terms in 
equation (7) are the most dominant (largest) at synoptic scales. 

Geostrophy is nice and simple, but nothing "exciting" 
occurs in the atmosphere under geostrophic balanc.e. For the 
most part, the geostrophic wind is nearly non-divergent or can 
be defined as non-divergent (see Holton, 1992, for definition 
of a non-divergent geostrophic wind), and divergence is neces­
sary to produce the large-scale vertical motions of interest. In 
the QG approximation, an ageostrophic term is retained to 
provide the required divergence and parcel accelerations. 

4. Quasi-Geostrophic Approximation 

Using the fact that the total wind can be divided into geo­
strophic and ageostrophic parts (u = ug + u" v = Vg + va), 
equations (5) and (6) can be written by substitution: 

a(ug + ua) a(ug + ua) 

at + (ug + ua) ax 

a(ug + ua) . a(ug + ua) + (Vg + va) + W ~-'-----= 
ay ap 

a<!> 
= J (v g + va) - ax + F, (8) 

Somewhere in here lies the QG version of a horizontal momen­
tum equation. It turns out (by scale analysis) that all ageos­
trophic terms can be neglected on the LHS of both (8) and (9) 
along with the vertical advection terms (last term on LHS). 
These terms are small compared to the remaining (geostrophic) 
terms on the LHS. Frictionless flow can be assumed if the 
approximations are used well away from the boundary layer. 
The resulting equations are shown below: 

aUg aUg aUg 
va) 
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(11) -+ ug- + v -
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Fig. 2. Conceptual diagram of geostrophic balance. Horizontal lines 
are height contours with heights decreasing toward the top of the 
diagram. Vertical arrows represent the two balancing accelerations, 
coriolis (CA) and height gradient (HGA, similar to pressure gradient). 
Geostrophic wind is horizontal vector with direction determined by 
orientation of height contours and speed by the contour packing. 

Note that only geostrophic terms remain on the LHS of (10) 
and (11). The natural question is "Why can the age os trophic 
terms on the LHS be neglected while the ageostrophic coriolis 
terms (fva or fua) on the RHS are retained?". It turns out that 
the fVa and fUa terms on the RHS are of the same order of 
magnitude (roughly 10-4

) as the retained geostrophic terms on 
the LHS. Besides, as will be evident later, if the ageostrophic 
terms on the RHS are neglected too, the equation once again 
only represents geostrophic balance! 

Equations (10) and (11) can be written in Lagrangian form 
(parcel form) with some minor rearrangement on the RHS: 

D~> Iv, - ~~ + tv, (12) 

DgVg = _ fu - a<p - JU
a 

Dt g ay (13) 

The terms have been drawn in a size relative to their magnitudes. 
The larger two "middle" terms in both equations are simply 
the terms involved in the geostrophic wind balance (eq. 7) and, 
thus, cancel one another. The' 'outside" or smaller terms, which 
must be equal to each other, represent the required parcel accel­
eration that was the object of the above manipulations. The 
LHS terms can be thought of as the rate of change of the 
geostrophic wind in a parcel moving with the geostrophic flow 
while the RHS small terms can be thought of as the "forcing" 
mechanism which produces this acceleration. 

Figure 3 displays representative magnitudes of the coriolis 
terms stated above in the x-component momentum equation 
(eq. 12): fVg and fva. Since fVg is equal to a<!>lax by the definition 
of the geostrophic wind, the solid lines are representative of 
the east-west height gradient. The solid line couplet centered 
just off the Pacific Northwest coast depicts a mid-troposphere 
trough. Comparing the solid (fvg) and dashed (fva) lines, it is 
evident that the geostrophic term (fvg) is dominant as stated in 
(12). The same can be shown for the y-component QG horizon­
tal momentum equation (13) using fUg and fua. 
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Fig. 3. Representative magnitudes of the coriolis terms in the quasi­
geostrophic approximation of the x-component horizontal momen­
tum equation showing that the geostrophic term, fvg (solid), is typi­
cally larger than the ageostrophic term, fva (dashed). Both are in 
units of 3x10- 4 m S - 2. 

Since the two large terms in bo~h (12) and (13) cancel one 
another, the atmosphere is dominated by geostrophic balance. 
In other words, the atmosphere is nearly in geostrophic balance 
or QUASI-GEOSTROPHIC. It is the small, but significant 
ageostrophic terms on the RHS of (12) and (13) which provide 
the "interesting weather" and which lead to evolving changes 
in the geostrophic flow. 

This rather simple discussion, based mainly on the horizontal 
momentum equation, should give the reader at least a cursory 
understanding of the meaning of the term quasi-geostrophic. 
A complete QG set includes QG forms of the horizontal momen­
tum, continuity, thermodynamic, and hydrostatic equations. 
These equations form a closed set, i.e., there are an equal 
number of dependent variables and equations. From this set, 
other interesting prognostic and diagnostic equations can be 
derived such as the QG form of the vorticity equation. 

5. Quasi-Geostrophic Vorticity 

The vertical component of the vorticity of the wind is a 
familiar concept to operational forecasters (Fig. la). The abso­
lute vorticity is made up of two parts: relative vorticity (~) or 
that which is moving along with the rotating coordinate system 
on earth and the earth's vorticity (f) due to the earth's rotation. 
The vertical component of the relative vorticity can be 
defined as: 

~ = av _ au 
ax ay (14) 

Simply stated, this equation shows the combined effects of how 
the north-south wind varies in the east-west direction and how 
the east-west wind varies in the north-south direction. In other 
words, relative vorticity represents a point measure of the rota­
tion of the airflow moving along with the rotating coordinate 
system on the earth. The QG form of the vertical component 
of relative vorticity can be found by simply substituting the 
geostrophic wind for the actual wind: 
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aVg _ aUg 
ax ay (15) 

In operational meteorology, the tendency, or how this vortic­
ity changes with time, is important. To obtain the QG vorticity 
equation, (12) and (13) can be manipulated to yield: 

a~g ~ aw 
- Vg • Vag + f) + fo -ap at 

L-J 

A B 

L-.J 

C 

(16) 

The equation may appear a bit intimidating to some in it's 
vector form, but it's physical simplicity is the important point 
here. (fo denotes that the coriolis parameter is held constant.) 
The individual terms are: 

• term A-change of geostrophic relative vorticity with time 
at a point 

• term B-advection of absolute geostrophic vorticity by the 
geostrophic wind 

• term C-stretching/compressing in a vertical column of air 

Simply put, (16) states that geostrophic relative vorticity can 
be changed at a point by blowing vorticity around (advecting 
it) and/or generating/dissipating vorticity by stretching/com­
pressing the column of air over the point in question. It is clear 
that advecting vorticity can change it's value at a point with 
time. What about the divergence or stretching term? 

First, stretching is directly related to convergence by the 
continuity equation: 

aU av aw -+-=-­ax ay ap (17) 

so that when the vertical column is stretched, horizontal conver­
gence tends to occur. Alternatively, horizontal divergence is 
associated with compression of the vertical column. The process 
can also be illustrated by visualizing a parcel whose volume 
remains constant but whose vertical and horizontal dimensions 
are allowed to change. If the parcel is stretched, then it will 
contract horizontally (converge). When it is compressed, it will 
expand horizontally (diverge). 

Figure 4a displays a common conceptual model of the vertical 
distribution of omega in the troposphere. This distribution 
implies a stretching of the column in the lower half and com-
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Fig. 4. Conceptual model of airflow through vertical column in atmo­
sphere. Vertical arrows give sense of upward/downward motion. 
(a) shows stretching in lower levels and compression above while 
(b) displays corresponding convergence and divergence pattern. 



Volume 21 Number 1 September, 1996 

pressing of the column in the upper half. Alternatively, Fig. 4b 
shows the vertical distribution of divergence associated with 
Fig. 4a. If advection is ignored, (16) can be rewritten as: 

a~g _ F. aw (18) 
at -)0 ap 

Thus, geostrophic relative vorticity is tending to decrease with 
time (aloft in Fig. 4) given either compression or divergence 
and increase (lower levels in Fig. 4) given either stretching or 
convergence. Returning to the parcel illustration, as the parcel 
expands vertically, air converges towards the axis of rotation 
causing it to rotate faster. When the parcel compresses verti­
cally, air diverges from the axis of rotation causing the parcel 
to spin more slowly. 

At first glance, this relationship in (18) may appear to be at 
odds with experience. Note that in Fig. 5, the area downstream 
from the upper trough at 300 mb is generally described by 
divergence of the wind field. Inspection of this same trough in 
Fig. la shows that vorticity should be increasing with time 
downstream from the trough axis. Equation (18) states that 
geostrophic relative vorticity should be decreasing with time 
in this area due to the divergence or compression. Obviously, 
the advection term which was ignored in (18), but shown in 
the full equation in (16), is the dominant term in the upper 
levels. In essence, despite a decreasing trend in geostrophic 
relative vorticity due to the vertical motion pattern, the fast 
wind speeds and high values of vorticity aloft produce a more 
dominant advection pattern which increases the geostrophic 
vorticity downstream of the trough with time. Simply stated, 
upper-level vorticity advection usually dominates changes in 
vorticity due to the divergence aloft. In lower levels (not 

_. _______ ~",)\~=~~·9i " _______ ~L 
Fig. 5. Divergence of the wind field at 300 mb valid 0000 UTe 
17 August 1995. Divergence is solid and convergence is dashed in 
units of 10-5 S-l . 
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shown), wind speeds are lighter and vorticity tends to be aligned 
with the height contours (channeled) so that the convergence 
pattern is more likely to be important. This conceptual pattern 
will be important when changes in vorticity advection with 
height are investigated in future articles. 

The point of the above discussion is to demonstrate the 
simplicity of the QG framework using the QG vorticity equa­
tion. This equation can be compared to the less simplified form 
(see Holton, chapter 4) involving other less obvious terms such 
as tilting or twisting and the solenoidal effect. In summary, to 
a first approximation, the QG form of the vertical component 
of vorticity is easily understood and describes the synoptic­
scale tendency of vorticity rather well. This simplicity will be 
evident in other more useful equations in future installments. 

6. Summary 

In a simple and rather non-rigorous fashion, the meaning of 
the term quasi-geostrophic has been demonstrated using the 
horizontal momentum equations. It was shown that it was neces­
sary to retain a small ageostrophic term in these equations in 
order to produce "interesting weather" in the synoptic-scale 
atmosphere. These simplified equations will be necessary to 
derive the height-tendency and various forms of the omega 
equation. 

A simplified QG vorticity tendency equation was also dis­
cussed. The purpose was not to confuse the reader with detailed 
mathematics, but to show that the terms in this equation are 
easily understood. More complex equations will be displayed 
in future articles, but the emphasis will be the same-under­
standing the physical nature of the terms. 
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