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Editor~s not~: This is the second in a series of continuing 
educatIOn articles on QG theory. The first "What Does Quasi­
Geostrophic Really Mean? ", was published in the National 
Weather Digest Volume 21 Number 1. David Billingsley, Science 
and Operations Officer, NOMlNWSFO, Boise, Idaho, volun­
teered to author this timely series and his initiative, time and 
special efforts are deeply appreciated. Supportive comments 
have been received from many readers. 

1. Introduction and Motivation 

Diag~oses of the synoptic-scale vertical motion field (omega) 
are an Integral part of the forecasting process. Most notably, 
the degree and longevity of large-scale lift affects the stability 
a~d mo~sture distribution of the atmosphere. For example, sus­
taIned lIft may steepen the environmental lapse rates to "pre­
pare" the atmosphere for a convective event, or it may produce 
~eas of significant large-scale condensation and precipitation 
In advance of a mid-tropospheric disturbance. Tools used' 'in 
search of omega" range from post-processed omega fields cal­
culated directly from the numerical weather prediction model 
~utput, .advection ~nd evolution of features on satellite imagery 
(Includll1g trends ll1 the water vapor imagery), estimation or 
calculation of lift produced by isentropic flow, correlation of 
the structure of a conceptual model of an atmospheric distur­
bance and lift, estimation or calculation of the quasi-geostrophic 
(QG) forcing functions from the omega equation, to the direct 
calculation of QG omega. 

This article will focus on the QG omega equation and its 
utility in diagnosing large-scale vertical motions. In its tradi­
tional form, the omega equation is as follows: 
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Though the equation may appear a bit intimidating to those 
:v~o have. been away from academic experience for some time, 
It IS certaIn that most operational meteorologists are intimately 
familiar with its terms. For instance, term B is proportional to 
how vorticity advection changes with height and term C is 
proportional to the temperature advection. 

The derivation of the omega equation involves manipulation 
of the QG vorticity equation, the QG thermodynamic equation, 
an~ a few others (see Holton 1992 or Bluestein 1992 for details). 
It IS rarely used in its full form as shown in (1) above. The 
equation can be solved explicitly for omega, but the solution 
is not trivial. Forecasters generally make assumptions about 
the structure of the atmosphere to further simplify the equation 
so that omega can be more easily related to the forcing functions 
on the right hand side. It is in this light that the equation will 
be examined in this article. 
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WhyJs it important to review this well-known equation? For 
several reasons including the following: 

1) Though more exact equations are used in the modern numer­
ical weather prediction models to produce a vertical motion 
field, it is advantageous for the forecaster to be able to relate 
some physical mechanism to these vertical motion patterns. 
In other words, why does the vertical velocity field look the 
way. it does? The omega equation, and in particular, the 
forcll1g functions of the right hand side provide such a mech­
anism. 

2) The assumptions used in qualitatively estimating omega and 
in applying or simplifying its forcing functions tend to be 
forgotten or overlooked, especially the longer a forecaster 
has been away from academia. In fact, some operational 
meteorologists may not remember ANY connection between 
the forcing functions and QG theory. 

3) With the advent of gridded numerical model data and more 
powerful computing tools in the operational environment, 
forecasters can, for the most part, produce any field they 
wish. For instance, positive vorticity advection in the mid­
troposphere can be calculated instead of qualitatively esti­
mated by the intersection of lines on a chart. Even better, 
differential.vorticity advection or the Laplacian of tempera­
ture advectIOn can be calculated and even combined. Use 
of the forcing functions in these ways necessitates better 
understanding of their origin, usefulness, and limitations. 

4) Different derivations of the omega equation (Trenberth 
1978; Hoskins et al. 1978) can be understood in light of 
the traditional omega equation. (These will be discussed in 
future articles.) 

5) With the improvement of numerical models and the trend 
toward. the mesoscale, there is a growing debate on the 
necessity, appropriateness, and usefulness of diagnosis 
methods based on QG theory. Since the forecaster ultimately 
has to make the decision on forecast methodology, it 
behooves her/him to know as much as possible about these 
methods and the theory from which they are derived. 

From the above discussion, it is apparent that QG theory and 
the omega equation remain an important topic in operational 
meteorology. Even with the push to finer scale models, forecast­
ers will still want to extract synoptic-scale information from 
these datasets. In an approach such as the forecast funnel (Snell­
man 1969), it is critical to assess the large-scale environment 
in order to understand the context in which the mesoscale 
processes are occurring. Though not the only way to view this 
large-scale picture, QG theory and its tools certainly provide 
a rather simple and understandable model. 

2. Term-by-Term Examination 

In a simplified form, the traditional omega (w) equation says 
that synoptic-scale vertical motion, represented by term A in 
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equation (1), is proportional to the sum of the differential vortic­
ity advection (term B), and the Laplacian of thickness advection 
(term C). In essence, this equation is the basis for the use of 
vorticity and temperature advection as tools for diagnosing 
large-scale lift. What follows is a brief explanation of the indi­
vidual terms. 

a. Three-dimensional Laplacian of omega 
Term A in equation (1) represents the three-dimensional 

Laplacian of omega; not exactly a common function used in 
forecasting the weather. It turns out that if wavelike behavior 
of omega (both horizontally and vertically) can be assumed, 
the three-dimensional Laplacian of omega can be shown to be 
proportional to minus omega: 
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which when combined with equation (1) yields: 

- W ex forcing functions B + C (3) 

This assumption is critical since it allows the forecaster to 
qualitatively relate the forcing functions to omega without com­
plex mathematical manipulations involving the inversion of a 
Laplacian. Since minus omega is proportional itself to upward 
motion, statement (3) says that if the right hand side of the 
omega equation is positive, upward vertical motion can be 
assumed. Conversely, if the right hand side is negative, down­
ward motion can be assumed. In essence, this means positive 
values of the forcing functions are associated with upward 
motion and negative values signify downward motion. 

Forecasters should have little trouble convincing themselves 
that the atmosphere is typically wavelike, especially when 
viewed from a synoptic-scale framework. An example of simple 
vorticity advection from the ETA model valid at 1800 UTC 
22 July 1996 displays this wavelike behavior (Fig. 1). It is easy 
to imagine that the resulting QG omega field forced by the 
"waves" in Fig. 1 would also be wavelike, assuming vorticity 
advection at this level is the predominant forcing mechanism. 
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Fig. 1. 500-mb absolute vorticity advection from NWS/NCEP Eta 
model valid at 1800 UTC 22 July 1996. Solid (dashed) contours 
represent positive (negative) values. Contour interval is 2 X 10-9 S-2. 
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Note that some of the waviness across the central plains may 
have been induced by model terrain effects (Barnes et al. 1996). 
QG omega usually exhibits wavelike behavior in the vertical 
as well. A plot of omega versus pressure downstream of a 
mid-tropospheric disturbance (Fig. 2) typically yields a mid­
tropospheric minimum in omega (maximum in upward motion). 
Though only "half" of a wave in the vertical, this pattern is 
still considered wavelike. 

Being wavelike is an easy concept to grasp. On the other 
hand, the Laplacian of some variable is not quite so straightfor­
ward. It is helpful to understand the Laplacian, though, since it 
reappears from time to time in the QG framework. For instance, 
geostrophic vorticity can be shown to be proportional to the 
Laplacian of the height field. The Laplacian also surfaces in 
term C of the omega equation and in the QG height tendency 
equation (not discussed in this series). Hence, grasping this 
concept will help the reader with more than just the interpreta­
tion of the omega equation. 

What is the Laplacian of omega? By simply looking at equa­
tion (1), this term can be defined as the sum of the forcing 
functions Band C (differential vorticity and temperature advec­
tion terms). Thus, the Laplacian of omega IS the QG forcing 
since it is equal to the right hand side of equation (l) . The 
question to answer is, "What is the relationship between this 
forcing and the resulting omega field? " 

This question has been partially answered already since it 
has been stated that given a wavelike field of omega, the Lapla­
cian of omega is proportional to minus omega (statement (2)) . 
This point can be easily illustrated by examination of these 
terms in one-dimension using a simple sine wave to represent 
omega (Fig. 3a). This wave is simply an omega couplet with 
descent on the left (positive omega) and ascent on the right 
(negative omega), similar to what might be found in a mid­
tropospheric disturbance. The Laplacian of omega in one­
dimension can be written as follows: 

V;w = :xe:) (4) 
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Fig. 2. Conceptual plot of omega versus pressure downstream of 
a typical mid-tropospheric disturbance. Maximum in upward motion 
occurs around 400 mb. (Note: author lives in elevated terrain of 
the west!) 
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Fig. 3. Simple curves showing the relationship between omega and 
the Laplacian of omega in one-dimension: a) shows omega as a 
simple sine wave from 0° to 360°; the first derivative of omega awl 
ax b) is, therefore, a cosine wave; and c) the Laplacian of omega 
V2w is represented by - sine x. Main point is V2w is proportional 
to -w. 

Hence, omega must be differentiated twice in arriving at the 
Laplacian. The first derivative (Fig. 3b), aw/ax, describes the 
instantaneous rate of change of omega with increasing x, or 
more simply, the slope of the original omega curve (Fig. 3a). 
The second derivative (Fig. 3c), a/ax (aw/ax), is the Laplacian 
by equation (4). (Mathematically, the Laplacian describes the 
curvature of omega.) 

The point of interest, then, is the relationship of the Laplacian 
of omega (Fig. 3c) and the original omega curve (Fig. 3a). In 
this purely sinusoidal case, the omega curve is the exact nega­
tive of the Laplacian of omega. In other words, where the 
Laplacian of omega is negative, omega is positive and vice­
versa. Not only do the signs of the terms satisfy the proportional­
ity in (2), but the magnitudes of the Laplacian of omega and 
omega are the same at each point on the respective curves 
(though oppositely signed). In operational terms, the right side 
of Fig. 3c where the Laplacian is positively valued could be 
representative of forcing due to positive differential vorticity 
advection or warm air advection (or the combination of the 
two). The omega response is given by the right hand side of 
Fig. 3a which shows omega to be negative, denoting upward 
motion. Hence, something familiar : positive differential vortic­
ity advection or warm air advection forcing upward motion. 
Correspondingly, the left hand side could represent a relation-
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ship between a negatively valued forcing function and down­
ward motion. 

In reality, the wavelike structure of the atmosphere rarely 
resembles something as simple as a sine wave. Given more 
complicated and realistic wave patterns, the relationship 
between the Laplacian of omega and omega is not as straightfor­
ward. Figure 4 exhibits a slightly more complex wavelike struc­
ture of omega (solid black line) consisting of a combination 
of sine and cosine functions. The main difference between 
omega in the pure sine example and Fig. 4 is the addition of 
an elongated weaker area of omega centered near 180°. This 
simple change will help to point out some important relation­
ships between omega and its Laplacian. 

The three curves in Fig. 4 represent the same relationships 
to each other as the set of curves in Fig. 3. The slope of omega 
(aw/ax ) is shown by the dashed line and the Laplacian is 
depicted by the lighter solid line. In general, omega is positive 
from 0° to 180° and negative from 180° to 360°. The Laplacian, 
however, changes signs four different times, representing four 
distinct areas of forcing. From 0° to approximately 105°, the 
Laplacian is negative as expected, coincident with positive 
values of omega. From 255° to 360°, the Laplacian is positive 
in an area where omega is negative. In these two areas, (2) 
continues to be satisfied, i.e., the Laplacian of omega is propor­
tional to minus omega. On the other hand, from 105° to around 
255°, the Laplacian of omega has the same sign as omega, 
countering the critical assumption in (2) . 

The situation is not as unfortunate as it first appears. Consider 
the form of the Laplacian curve versus the omega curve. The 
Laplacian curve appears' ' noisier" than omega, or alternatively, 
omega looks smoother. This difference is a characteristic of 
the Laplacian of any field and the original field . Hence, a plane 
view of the Laplacian of omega at 500 mb will look noisier than 
the omega field itself. Moreover, the more dominant features in 
the Laplacian field will play the largest role in determining 
omega. This influence is felt not only in close proximity to the 
stronger features , but also in adjacent locations and levels of 
the atmosphere. In other words, the forcing spreads itself out 
spatially over a domain larger than its own. 

From a physical standpoint, the relationship between forcing 
and the resulting omega field may be better understood by 
comparison with a heat source/sink problem. Consider a heat 
source positioned in the middle of a room. The result of this 
heat source is to raise the temperature at all points in the room. 
Small heat sinks are present which diminish the effect of the 

l'O " ~ '~ .~ •• •••• , ~~:~::':.lI:VC 'I 
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Fig. 4. Similar to Fig. 3, except omega (solid) and derivatives result 
from a slightly more complex function of sines and cosines, First 
derivative is dashed and Laplacian shown by lighter solid line. Figure 
shows that more dominant forcing areas determine sign of omega. 
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heat source, but the source is strong enough to overpower any 
cooling effects. The overall result of this heat source is to raise 
the temperature at all points within the room (not evenly). Note 
that the source not only affects the local temperature, but it 
affects the temperature at adjoining locations and levels 
throughout the room, even in areas where weaker heat sinks 
are attempting to reverse the temperature trend. 

In terms of the omega equation, the heat source is represented 
by the Laplacian of omega (the total forcing function repre­
sented by the right hand side terms of equation (I)) and the 
temperature rise corresponds to the resulting omega field . As 
an example, consider a strong center of forcing in the middle 
troposphere due to positive vorticity advection (PYA, the heat 
source). (Assume for purposes here that PYA increases with 
height.) This forcing will result in upward motion not only near 
the PYA center, but also some distance away in the horizontal 
and vertical. A weak negative vorticity advection (NY A) area 
may be located nearby (like the heat sink above) and could 
help to diminish the effect of positi ve forcing due to the stronger 
PY A center. If the PYA forcing is strong enough, it will over­
power the effects of the NY A and result in net upward motion, 
even in the vicinity of the NY A center. 

What this all means for Fig. 4 is that the stronger forcing 
features (from approximately 0° to 105° and 255° to 360°) 
overpower the two weaker features in the middle of the figure, 
producing the resultant smoothed omega pattern. Even where 
the forcing should result in an opposite sign of omega (from 
105° to 255°), the overpowering forcing features on the left 
and right hand sides result in the "correct" sign of omega. 

What does this tell the forecaster? Concentrate on the large­
scale, well-defined QG forcing areas when trying to use the 
omega equation to qualitatively evaluate the vertical motion 
field. The more dominant the QG forcing areas are in magnitude 
and scale, the more likely these features can be used to correctly 
determine the sign and strength of the resulting omega field. 

Hopefully, the examples above provide some insight into the 
meaning of the Laplacian of omega and why this Laplacian is 
typically proportional to the negative of omega for synoptic­
scale systems of interest. The bottom line is that THE LEFT 
HAND SIDE OF THE OMEGA EQUATION CAN BE 
REDUCED TO MINUS OMEGA FOR LARGE-SCALE SYS­
TEMS. Without this critical assumption, the simple qualitative 
relationships to be examined in the following sections would 
not exist. For a more precise and technical discussion of the 
potential errors associated with this assumption, refer to Appen­
dix A in Durran and Snellman (1987). 

b. Differential vorticity advection 
Term B is typically' the most familiar of the terms in the 

omega equation (eqn. 1). The portion in brackets is the vorticity 
advection, or more precisely, the advection of absolute geo­
strophic vorticity by the geostrophic wind. This more precise 
definition simply states that the vorticity advection can be 
defined by the structure of the height field (since geostrophic 
wind is used to define both the wind and the vorticity field). For 
purposes of simplicity, this term (in brackets) will, hereafter, be 
referred to as vorticity advection. 

Since pressure decreases aloft: 

a. I· · I h - - IS qua Jtatlve y t e same as ap 
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where z is height. Ignoring the constant (jrJa) for the time being, 
a more qualitative representation of term B can now be written: 

-wex -i.[(vort advection)] ex i. [(vort advection)] (5) ap az 
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This equation states that upward motion (negative values of 
omega) is associated with vorticity advection increasing with 
height (in the Northern Hemisphere). This occurs with either 
positive vorticity advection (PYA) increasing with height or 
negative vorticity advection (NY A) decreasing with height. 
Conversely, downward motion (positive values of omega) is 
associated with vorticity advection decreasing with height, or 
alternatively, NY A increasing or PYA decreasing with height. 

A plot of differential vorticity advection (Fig. 5) associated 
with a typical 500-mb disturbance crossing Ontario, Manitoba, 
and Minnesota displays a pattern of vorticity advection increas­
ing with height (solid) downstream of the trough axis and 
vorticity advection decreasing with height (dashed) upstream 
of the axis. A vertical cross-section through the disturbance 
(not shown) confirms that these areas are associated with PYA 
increasing with height and NY A increasing with height, respec­
tively . This pattern of forcing corresponds well with the 
expected conceptual model of rising motion downstream and 
subsidence upstream of a mid-tropospheric disturbance. This 
configuration of PY A and NY A increasing with height is com­
mon in the mid-latitudes since wind speed and vorticity, and 
correspondingly, the magnitude of vorticity advection tend to 
increase with height near the path of disturbances in the wester­
lies. NY A decreasing with height, however, is just as proper 
for forcing upward motion as PY A increasing with height. 
Alternatively, PYA decreasing with height is just as suitable 
for forcing downward motion as NY A increasing with height. 

To complete the evaluation of term B, the expression (jrJa) 
that was ignored earlier must be taken into consideration. This 
term contains the static stability parameter (a) in the denomina­
tor, so an inverse relationship exists between the static stability 
of the airmass and the degree offorcing. Hence, a given amount 
of differential vorticity advection will be more efficient at pro­
ducing vertical motions in an airmass that is less statically 
stable than in an environment of highly statically stable air. 
With this in mind, a measure of static stability should be used 
in conjunction with the pattern of differential vorticity advection 
(or even for simple 500-mb vorticity advection) to properly 
evaluate the forcing . 

Fig. 5. Differential vorticity advection from Eta model valid 1200 
UTC 22 July 1996 near a 500-mb short-wave trough calculated in 
a layer from 450-550 mb. Contour interval is 3 X 10- 17 Pa- 1 S-3. 

Solid (dashed) contours are positive (negative) values and imply 
forcing for upward (downward) motion. Height (long-dashed) field 
contoured every 60 meters. 
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To illustrate this point, the static stability (aSlap) correspond­
ing to the previous plot of differential vorticity advection 
(Fig. 5) is exhibited in Fig. 6. (This term will be a reasonable 
approximation to the static stability parameter, 0"). Note that 
the static stability is lowest in southeastern Manitoba (dashed 
in Fig. 6), near the center of forcing where NV A is increasing 
with height (dashed in Fig . 5) . Static stability generally 
increases to the southeast into the Great Lakes region, toward 
the area where PYA is increasing with height (Figs. 5 and 6). 
This pattern indicates that the forcing for downward motion 
centered on the Manitoba/Ontario border is likely greater than 
the corresponding forcing for upward motion centered further 
east over southwest Ontario. Though both centers have approxi­
mately the same magnitude of differential vorticity advection, 
the lower static stability where NV A is increasing with height 
results in better forcing. 

Obviously, term B is related to the historical usage of 500-
mb vorticity advection as a proxy for vertical motion. Take 
away the static stability term lfolO") and the vertical derivative 
(alap) and term B simplifies to vorticity advection at some level 
(such as 500 mb). Why 500 mb? One reason is that forcing 
provided by differential vorticity advection is better correlated 
with omega in the mid-levels of the troposphere. Additionally, 
since 500 mb is close to the level of non-divergence, vorticity 
is nearly conserved at this level. In other words, the vorticity 
field moves along with the flow and can be followed more 
easily with time. 

Qualitatively, the sign of the forcing can usually be deter­
mined correctly by using either 500-mb vorticity advection, 
differential vorticity advection, or the full term B (ignoring 
the effects of temperature advection for now). Note the term 
"usually." Quantitatively, the relative strength of the forcing 
may be quite different amongst the different methods and may 
differ significantly depending on the chosen level or layer. For 
example, vorticity advection at 500 mb (Fig. 7) for the case 
shown in Fig. 5 suggests three different centers of PV A (two 
in Minnesota and one in southwest Ontario). The layer from 
450-550 mb chosen for display in Fig. 5 exhibits two different 
centers, but the overall pattern is about the same. By using 
a deeper layer (300-700 mb, Fig. 8) to calculate differential 
vorticity advection, it becomes apparent that the PV A center 
( + 12 units center in Fig. 8) in southwest Ontario is a deeper and 
more well-defined feature. Spatial cross-sections (not shown) 

Fig. 6. Static stability (aalap) calculated in 450-550 mb layer match­
ing the time period in Fig. 5. Contour interval is 0.5 x 10- 4 K Pa- 1• 

Lower static stability represented by dashed contours. 

47 

~ 
\ j /u\ 

V \ 
, \ 

) 

\ 

Fig. 7. 500-mb absolute vorticity advection matching the time period 
in Fig. 5. Contour interval is 3 x 10- 9 S - 2. Solid (dashed) contours are 
positive (negative) values and imply forcing for upward (downward) 
motion. Height (long-dashed) field contoured every 60 meters. 
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Fig. 8. Differential vorticity advection calculated from 300-700 mb. 
Contours and time period same as in Fig. 5. 

verify that the forcing (due only to term B) is approximately 
twice as strong in southwest Ontario as in Minnesota. Thus, it 
behooves the forecaster to investigate the forcing over more 
than one level or layer if possible. 

c. Laplacian of temperature advection 
With a past fixation on vorticity advection, forecasters have 

often overlooked term C. In its form in equation (1), term C 
is actually the Laplacian of thickness advection. Since thickness 
can be shown to be proportional to the average temperature of 
a layer, term C can be rewritten as : 

1 -+ -
-w ex __ V2[ - V . V(T)] (6) 

0" R 

and can now be thought of as the Laplacian of the mean tempera­
ture advection of a layer. The Laplacian can be treated in a 
similar fashion to the Laplacian of omega in section a, assuming 
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the temperature advection field is considered wavelike. This 
assumption reduces (6) to the following qualitative statement: 

- w oc - ..!.V2[temp advection] oc + ..!.[temp advection] (7) 
(J (J 

which says that warm advection is associated with upward 
motion and cold advection with downward motion. 

It is interesting to note that if term B is ignored in equation 
(1), the resulting equation describes the relationship of the 
three-dimensional Laplacian of a variable on the left-hand-side 
with the two-dimensional Laplacian of a variable on the right­
hand-side: 

LJ 
3-d Laplacian 2-d Laplacian 

Hence, it can be argued that omega resulting from term C is 
more closely related to the temperature advection field than the 
Laplacian of the temperature advection. 

An example of the temperature advection field, correspond­
ing to the vorticity advection pattern in Fig. 5, is presented in 
Fig. 9. (The Laplacian of this field is shown in the next section.) 
Cold advection (dashed), and hence downward motion, is sug­
gested across southwest Ontario, stretching back into portions 
of northern Minnesota to southeast South Dakota. A band of 
warm advection (solid), forcing upward motion, is seen to the 
northwest from the southwestern tip of Ontario into southeast 
North Dakota. Another more disorganized band of warm advec­
tion exists just ahead of the cold advection area mentioned 
above located from central Ontario into the Great Lakes region. 
A quick comparison of Figs. 5 and 9 easily shows areas of 
conflict between the two forcing terms (to be discussed in the 
next section). 

The forcing provided by the temperature advection term 
(term C) is also inversely proportional to the static stability 
parameter (note (J in the denominator in eqs. 6 and 7). Given 
a constant value of temperature advection (or the Laplacian), 
where static stability is lower, the magnitude of forcing will 
be higher. Where static stability is higher, the degree of forcing 

Fig. 9. Temperature advection at 500 mb. Contour interval is 2 x 
10 - 5 K S - I. Solid (dashed) contours represent warm (cold) advection 
implying upward (downward) vertical motion. 
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will be diminished. Hence, the temperature advection term 
should also include some measure of static stability for quantita­
tive evaluation of the forcing. 

As with differential vorticity advection, the sign of the forc­
ing can usually be determined correctly by using either the 
temperature advection, the Laplacian of temperature advection, 
or the full term C. If the objective is to infer omega resulting 
from term C in isolation (ignoring the vorticity advection term), 
it is best to simply use temperature advection. If the objective 
is to compute the full forcing function on the right-hand-side 
of (1), the full term C is necessary. Once again, results may 
vary depen~ding on the level or layer chosen. 

d. Total forcing 
To produce the total forcing for vertical motion provided by 

a QG disturbance, both the differential vorticity advection and 
temperature advection terms must be combined. Unfortunately, 
in many cases, the forcing provided by these terms tends to 
be of the opposite sign. To illustrate this point, compare the 
Laplacian of temperature advection (Fig. 10) with the differen­
tial vorticity advection (Fig. 5) for the case presented in the 
previous sections. The implied areas of vertical motion almost 
seem 1800 out of phase. For instance, the maximum in differen­
tial vorticity advection over southwest Ontario (solid, 15 unit 
center in Fig. 5) is nearly collocated with an area of suggested 
cold air advection (dashed, -15 unit center in Fig. 10). This 
implies upward motion forced by the differential vorticity 
advection term and downward motion forced by the temperature 
advection term. Since both figures (5 and 10) have been pro­
duced with the same units, the terms can simply be added 
together to arrive at the correct forcing (Fig. 11). For those 
who continue to rely mostly on vorticity advection, note that 
the total forcing certainly has some significant differences com­
pared to the vorticity advection pattern (Figs . 7 and 11), 
although the general configuration is qualitatively similar. This 
similarity suggests that term B is dominant in the mid-levels 
for this system at this point in time. Note that the contributions 
from terms Band C to the total forcing can vary considerably, 
depending on the selected level, layer, or evolutionary phase 
of the system. 

Historically, terms Band C in equation (1) have been either 
qualitatively evaluated from centrally generated charts or calcu-

Fig. 10. Laplacian of thickness advection calculated in 450-550 mb 
layer corresponding to period in Fig. 5. Contour interval is 3 x 10- 17 

Pa -1 S-3. Solid (dashed) contours are positive (negative) values and 
imply forcing for upward (downward) motion. 
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Fig. 11. Total forcing for omega produced by addition of differential 
vorticity advection and Laplacian of thickness advection shown in 
Figs. 5 and 10, respectively. Contours and time period same as in 
Fig. 5. 

lated using simplifications of the original terms. Either way, 
evaluation of the total forcing was difficult due to the opposing 
terms. This problem was partially the impetus for the develop­
ment of alternative derivations of the omega equation to be 
discussed in future articles (Q-vectors for instance). Resources 
are now adequate in most operational settings to evaluate the 
total forcing of the right hand side and determine which physical 
mechanism is dominant-vorticity or temperature advection. 

3. A Balancing Act 

Geostrophic balance is a fairly easy concept to grasp, i.e., the 
geostrophic wind is determined by the height field. Hydrostatic 
balance is also a rather simple idea-the thickness of a layer 
is proportional to the mean temperature of that layer (as in the 
use of 1000-500 mb thickness fields as an approximation for 
mean layer temperature). These two balance states can also be 
combined into the thermal wind relationship which says that 
the horizontal temperature gradient is related to the vertical 
shear of the geostrophic wind. On the synoptic-scale, the atmo­
sphere is always nearly in a balanced state which satisfies these 
relationships. It is the disturbances or the imbalances, however, 
which tend to "force" the interesting weather. 

QG theory provides a very nice conceptual framework in 
order to understand the atmosphere in terms of disturbances 
and the tendency to return to a balanced state. Consider an 
area of PV A increasing with height and negligible temperature 
advection (Fig. 12a). Assuming no other effects, how does this 
forcing affect the vorticity distribution with time? To answer 
this question, recall the QG vorticity equation: 

~ _ -+. V r j) .f aw at - - V R ("'8 + + )0 ap 

change in 
vorticity with 

time at a 
point 

advection of 
vorticity 

divergence 

(9) 

which says that the vorticity (at a point) can change with time 
by only two processes: advection of vorticity and divergence. 
Obviously, discounting divergence effects (for now), vorticity 
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300 PVA VORT---->VORT 

500 rv,\ VORl -----> VORT 

700 0 o -----> 0 

time > 

(a) (b) 

Fig. 12. Conceptual diagram displaying results of differential vortic­
ity advection (geostrophic forcing) . (a) shows PVA increasing with 
height from 0 at 700 mb to large values at 300 mb. (b) exhibits the 
temporal trend of vorticity resulting from vorticity advection increas­
ing with height. Vorticity increases at a faster rate aloft, so difference 
in vorticity between low and high levels increases with time. 

will increase with time at each level. The vorticity, however, 
increases aloft at a faster rate than below (Fig. 12b), leading 
to the relationship: 

(10) 

which says that the vorticity difference between 300-700 mb 
is increasing with time (at a point). 

With the vorticity field increasing with time, it is obvious 
that the height field would have to change in some way to keep 
the atmosphere geostrophic. Since vorticity (geostrophic) is 
related to the height field by: 

(11 ) 

where <P is the geopotential height, (10) can be rewritten: 

iV2(<P300 - <P700) > 0 at (12) 

Assuming the thickness field (<P300 - <P700) is wavelike, (12) 
becomes: 

(13) 

Thus, the necessary adjustment for increasing the vorticity dif­
ference with time (10) is to decrease the thickness of the layer. 
This adjustment seems logical since vorticity is increasing faster 
aloft than below, so heights should be falling faster aloft 
than below. 

To keep the atmosphere i'n hydrostatic balance, the mean 
temperature of the layer (300-700 mb) must decrease along 
with the thickness. If the temperature remains the same and 
the thickness does not decrease, then the atmosphere cannot 
move back toward geostrophic balance (the winds and vorticity 
would be out of balance with the height field). What must 
happen to keep the atmosphere BOTH geostrophic and hydro­
static? The adjustment in QG theory is to provide a secondary 
circulation. The vertical branches of this circulation are simply 
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the omega fields diagnosed from the omega equation. The 
adjustment in this case is shown in Fig. 13a. 

Upward motion that is associated with differential vorticity 
advection per the omega equation helps balance the atmosphere 
in two ways. First, the upward motion results in adiabatic 
cooling of the layer which moves the atmosphere back toward 
hydrostatic balance (remember the mean temperature needed 
to be lower to "agree" with the changing thickness field) . 
Secondly, the omega distribution in Fig. 13a results in a vertical 
distribution of divergence which helps to dampen the geo­
strophic disturbance. Divergence occurs aloft which from (9) 
tends to decrease the vorticity with time. Convergence develops 
below which tends to increase the vorticity with time. This 
configuration results in: 

(14) 

which counters the trend from the geostrophic disturbance 
shown in (10). The response of omega is shown conceptually 
in Fig. 13b. 

Looking at (10) and (14), it is obvious that two processes 
(differential vorticity advection effects and the divergence 
effects from the omega field) are occurring which oppose one 
another. It turns out that the effects due to differential vorticity 
advection dominate so that for the overall system: 

(IS) 

which necessitates a thickness change: 

(16) 

which leads to a need for a cooling of the airmass through 
omega. An important point, here, is that the omega pattern 
must play two roles which are not independent. A given omega 
pattern is related to the thickness change through adiabatic 
cooling, but also partially determines this same thickness 

3UU f Div 
VORT :\,VORT 

500 r VUI{T > vrmT 
a a/')OO - (700) < 0 

700 T Can > vOIrr 

l' 
time > 

(0) (b) 

Fig. 13. Conceptual diagram showing the instantaneous non-geo­
strophic response to processes shown in Fig. 12. (a) is resulting 
vertical distribution of omega with divergence (convergence) of the 
wind aloft (below). (b) exhibits the temporal trend of vorticity due to 
the pattern shown in (a). Divergence aloft tends to decrease vorticity 
with time and convergence below tends to increase vorticity with 
time, so difference in vorticity between low and high levels decreases 
with time. 
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change through its divergence pattern. Obviously, a balance 
must be achieved. 

It is important to note that all of the above processes occur 
simultaneously. The omega field is an instantaneous response 
to the geostrophic disturbance. The geostrophic disturbance 
tries to move the atmosphere out of balance (geostrophic or 
hydrostatic) while the non-geostrophic response (omega) tries 
to restore the atmosphere to a balanced state. The magnitude 
of omega will be just enough to produce this balance. Relatedly, 
the relationships discussed above say nothing about how the 
various fields will evolve. A given magnitude of differential 
vorticity advection cannot be used to predict the future state 
of the omega field. It can only be used to diagnose the current 
state of the omega field. 

So far, the discussion has centered around term B, differential 
vorticity advection. The same balance ideas pertain to the tem­
perature advection telm (C) as well. The details are described 
elsewhere (see Bluestein 1992 or Holton 1992), but it is easy 
to see how the effect of a temperature advection disturbance 
could be reduced by adiabatic vertical motion. For example, 
consider the case of forcing provided by warm advection. The 
temperature advection, or geostrophic disturbance, tends to 
warm the layer in question. Upward vertical motion is associ­
ated with this warm advection area which counters the warming 
by adiabatic cooling due to this lift. Once again, the omega 
field produced as a response to the temperature advection forc­
ing should be of sufficient magnitude to keep the atmosphere 
hydrostatic and geostrophic. 

4. Level of QG Forcing 

A common question asked by many forecasters is " What 
level or layer is best to evaluate the QG forcing?" The answer 
is not straightforward. What is clear is that differential vorticity 
advection typically dominates the forcing in the middle-upper 
troposphere (Figs. 5, 10, and 11 to see an example). The temper­
ature advection term tends to become more important in the 
lower levels (Figs. 14, 15, and 16). The dominance of each 
term also depends on the evolution of a system. For example, 
in traditional cyclogenesis theory, one would expect differential 
vorticity advection to dominate in the early stages before cyclo­
genesis occurs. As the cyclone spins up, temperature advection 

Fig. 14. Differential vorticity advection calculated in layer 700-800 
mb. Contours and time period same as in Fig. 5, except interval is 
2 x 10- 17 Pa- 1 S - 3. 
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Fig. 15. Laplacian of thickness advection calculated in layer 
700-800 mb. Contours and time period same as in Fig. 5, except 
interval is 2 X 10-17 Pa- 1 S - 3. 

Fig. 16. Total forcing for omega in layer 700-800 mb computed by 
adding terms in Figs. 14 and 15. Contours and time period same 
as in Fig. 5, except interval is 2 x 10- 17 Pa- 1 S - 3. Comparison with 
Figs. 14 and 15 reveal thickness advection term more dominant. 

terms would become increasingly important. These relation­
ships are likely no surprise to the operational forecaster. 

What is not as well understood is the relationship between 
the forcing at a single level or shallow layer and the vertical 
distribution of omega. A common misconception is that the 
forcing at one level contributes to the omega field only at that 
level. As shown in the discussion of the Laplacian (section 2a), 
omega at one level may be better related to the forcing at 
another level. Thus, the 700-mb omega pattern may be better 
correlated to the 500 mb forcing than the 700 mb forcing. It 
turns out that the relationship between omega and the right 
hand side forcing at the same level is best defined in the middle 
troposphere. For this reason, the total forcing should generally 
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be evaluated near 500 mb or in the mid-troposphere from 
around 700-300 or 600-400 mb. This is not to say that low­
level temperature advection fields are unimportant. If the low­
level temperature advection field is dominant, and mid-upper 
level vorticity advection is weak, 700-mb temperature advec­
tion may be closely correlated to 700-mb omega. In a case like 
this, a layer centered around 700 mb may be best. A more 
detailed and mathematical discussion of these issues can be 
found in Appendix A in Durran and Snellman (1987) or the 
Appendix in Trenberth (1978). 

5. Summary 

Terms rsuch as vorticity and temperature advection are very 
common in discussions offorecast reasoning and almost always 
implicitly refer to the forcing of the vertical motion field. Fore­
casters obviously are quite familiar with these forcing terms 
and, whether they realize it or not, the right hand side of 
the omega equation. Hence, portions of this article are simply 
review. On the other hand, it is the author's opinion that most 
operational forecasters know much less about the relationship 
of omega to the forcing functions or the concept of the balance 
state of the atmosphere under which QG theory operates. In 
other words, HOW is omega related to the forcing functions? 
WHY is omega related to the forcing terms? How does differen­
tial vorticity advection translate into upward vertical motion 
from a physical standpoint? The discussion on the Laplacian 
of omega and the balance state of the atmosphere attempts to 
answer these questions. 

With this understanding in hand, the reader will have the 
background to comprehend alternative approaches to the tradi­
tional equation, namely the Q-vector (Hoskins et al. 1978) and 
Trenberth (1978) formulations. In these approaches, the forcing 
functions on the right hand side of the omega equation are 
combined into one forcing term, eliminating the need for evalu­
ation of two potentially opposing terms. These alternative 
approaches will be the subject of the next article. 
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